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From building towers to picking an orange from a stack of fruit, assessing support is critical for suc-
cessfully interacting with the physical world. But how do people determine whether one object supports
another? In this paper, we develop a counterfactual simulation model (CSM) of causal judgments about
physical support. The CSM predicts that people judge physical support by mentally simulating what
would happen to a scene if the object of interest was removed. Three experiments test the model by
asking one group of participants to judge what would happen to a tower if one of the blocks were
removed, and another group of participants how responsible that block was for the tower’s stability.
The CSM accurately captures participants’ predictions by running noisy simulations that incorporate
different sources of uncertainty. Participants’ responsibility judgments are closely related to counterfac-
tual predictions: a block is more responsible when many other blocks would fall if it were removed. By
construing physical support as preventing from falling, the CSM provides a unified account of how
causal judgments in dynamic and static physical scenes arise from the process of counterfactual
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Take a look around yourself, and you will notice something that is
at the same time both perfectly ordinary and striking: most things do
not move. The computer monitor does not move, the table on which
it rests does not move, the floor on which the table stands does not
move, and so on. Things do not move because they are supported
by other things. The computer monitor is supported by the table,
which is supported by the floor, which is supported by the structure
of the house, which is supported by its foundation, and so on. But
what does it mean for the monitor to be supported by the table?
One intuitive answer is that the table supports the monitor because
the monitor is on the table. But what if the monitor on the table
were attached to a monitor arm that is drilled into the wall? Does
the table still support the monitor in this case?

In this paper, we explore the idea that people’s understanding of
physical support is intimately linked to their understanding of

causation. One object A supports another object B if A prevents
B from moving (or falling). What does it mean for A to prevent
B from falling? The answer to this question involves a counterfac-
tual: A prevents B from falling when it is true that B would fall if
A were removed. We develop the counterfactual simulation model
(CSM) of physical support that implements this idea and test the
model in three sets of experiments asking participants to evaluate
how responsible one object is for the stability of others. We believe
that people solve this task by constructing a mental model of the
scene, and by simulating what would happen if the object of inter-
est were removed.

Here is a road map for the paper: we first review prior work on peo-
ple’s intuitive understanding of the physical world, and on how people
make causal judgments. We then describe the CSM in detail and con-
trast it with an alternative account that predicts people’s judgments
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about physical stability based on various features of the scene. We test
the models in three experiments in which participants view towers of
blocks that are stacked on a table. We ask one group of participants
to judge what would happen if a particular block was removed, and
another group of participants how responsible that block is for all of
the other blocks staying on the table (Experiments 1 and 2), or for
one specific block (Experiment 3). Across these experiments, we find
that the counterfactual predictions of one group of participants about
what would happen if the block were removed closely relate to the
responsibility judgments of another group of participants. We also
find that the CSM accurately captures participants’ judgments and
that a model that only uses features of the actual situation, such as
the height of the tower and the location of the to-be-removed block,
does not capture participants’ judgments as well. We conclude by
highlighting limitations of the CSM and future challenges that lie
ahead.

People’s Intuitive Understanding of the Physical World

People generally have a good sense of how the physical world
works. We catch balls, stack stones, ride bikes, and build towers
(Figure 1, top). While earlier work documented how people’s phys-
ical intuitions sometimes fail (McCloskey, 1983; McCloskey et al.,
1980, 1983), more recent work emphasizes situations in which they
succeed (Kubricht et al., 2017; Smith et al., in press). People can
predict whether a tower will topple over (Battaglia et al., 2013),
or where a moving object will go next (Smith et al., 2013; Smith
& Vul, 2013). They can also use their intuitive physical understand-
ing to infer what happened. They can figure out where a ball was
behind an occluder before it appeared (Smith & Vul, 2014), in
which hole of a box a ball was dropped based on visual and audi-
tory cues (Gerstenberg, Siegel, et al., 2021), or whether a person
used one or two hands to reconfigure a stack of blocks (Yildirim
et al., 2017, 2019). People infer unobservable physical properties
such as the mass of different objects based on how they collide
with one another (Sanborn et al., 2013) or based on how they
form stable configurations of block towers (Hamrick et al., 2016).
People give causal explanations of what happened by comparing
what actually happened with what would have happened if a candi-
date cause had not been present in the scene (Gerstenberg,
Goodman, et al., 2021; Gerstenberg & Icard, 2020; Gerstenberg
et al., 2017).

Underlying these various success stories is a common human
feat: people reason about the physical world by building mental
models (Craik, 1943; Gerstenberg & Tenenbaum, 2017; Sloman,
2005; Smith et al., in press; Ullman et al., 2017; Ullman &
Tenenbaum, 2020). Prediction, inference, and explanation can be
understood as different operations over these mental models. For
example, Battaglia et al. (2013) model people’s judgments about
whether or not a tower of blocks is going to fall. They assume
that people construct a mental model of the scene based on the per-
ceived visual input and then make predictions by mentally simulat-
ing how the physical scene will unfold (Schwartz & Black, 1999).
While the physical world is deterministic—meaning there is a sin-
gle true answer to the question of whether (and how) a tower will
fall—people do not have access to this ground truth. Instead, they
have to use their mental model to simulate what will happen.

People’s predictions about what will happen are graded: they do
not know for sure whether or not a tower is going to fall. Battaglia

et al.’s model accurately captures the gradedness in people’s
responses by assuming that people are uncertain about different
aspects of the scene and that this uncertainty affects their mental
simulations of what will happen. Specifically, the model assumes
that people have perceptual uncertainty about where exactly the
different blocks are located and dynamic uncertainty about how
exactly the scene is going to unfold. The model predicts people’s
judgments by starting with the actual configuration of the blocks,
randomly perturbing the location of each one, and then simulating
what will happen. To generate these simulations, the model uses
the same physics engine that was used to make the stimuli. This
process of random perturbation plus forward simulation is
repeated multiple times to generate a distribution of future out-
comes. This distribution is then used to capture people’s graded
judgments. For example, consider a stable, well-supported tower
A compared to another tower B that is on the brink of falling.
Tower A is unlikely to fall even if each block’s location was ran-
domly perturbed. Tower B, however, is likely to fall when the
block locations are perturbed. By taking the proportion of times
in which a tower falls across the noisy simulations, the model
yields a graded prediction about whether the tower will fall.
This approach of modeling people’s intuitive understanding of
the physical world is sometimes referred to as “noisy Newtons”:
“noisy” because noise is added to the simulations to capture peo-
ple’s uncertainty, and “Newtons” because the dynamics of the
physics engine approximates Newtonian dynamics (Smith et al.,
in press).

Block towers have emerged as somewhat of a Drosophila for
studying people’s intuitive understanding of physics (Battaglia et
al., 2013; Cortesa et al., 2018; Fischer et al., 2016; Gweon et al.,
2017; Hamrick et al., 2016; Mitko & Fischer, 2020; Yildirim
et al., 2017, 2019). Recent work has proposed various ways for
how people might learn to make predictions about block towers
and other physical settings (Allen et al., 2020; Baradel et al.,
2019; Battaglia et al., 2016; Bear et al., 2021; Bramley et al.,
2018; Chang et al., 2017; Groth et al., 2018; Janner et al., 2019;
Lerer et al., 2016; Ullman et al., 2018; Wu et al., 2015). Our work
builds on the idea that people’s mental representation of the physical
scene is in important ways similar to how the scene would be con-
structed in a physics engine of the kind that is used to make
physically realistic animations in video games (Gerstenberg &
Tenenbaum, 2017; Smith et al., in press; Ullman et al., 2017, but
see Ludwin-Peery et al., 2021).

In the work presented here, we asked people to judge how respon-
sible one block is for the stability of the tower. To answer this ques-
tion, we need to turn to causality.

People’s Intuitive Understanding of Causality

People use their intuitive understanding of the physical world not
only to make predictions about the future (e.g., where will this ball
land?), but also to explain what happened (e.g., where did this ball
come from, and who threw it?). Predictions and explanations operate
on the same mental model but require distinct computations
(Gerstenberg & Tenenbaum, 2017). For prediction, one only needs
to unroll a simulation of what will happen forward. Giving causal
explanations, however, involves a comparison of what actually hap-
pened with what would have happened otherwise (Gerstenberg,
in press).
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But are such counterfactual comparisons really necessary?
Maybe it is sufficient to just focus on what is true of the actual sit-
uation? In the philosophical literature, there are two major theo-
retical frameworks for thinking about causation. According to
process theories, causation is understood as a transfer of a property
via a spatiotemporally continuous process from cause to effect
(Dowe, 2000; Salmon, 1994; Wolff, 2007). For example, A
caused B to move if A transferred momentum to B. According
to dependence theories, causation is understood as a form of
dependence (Hume, 1748/1975; Lewis, 1973; Mackie, 1974;
Suppes, 1970). For example, according to a counterfactual theory
(Lewis, 1973; Pearl, 2000; Woodward, 2003), A caused B to move
if B would not have moved had A been removed from the scene.
While process theories ground causation solely in terms of what
actually happened, dependence theories rely on a comparison
between what actually happened and what would have happened
otherwise.

Drawing on both theoretical frameworks, Gerstenberg,
Goodman, et al. (2021) developed the counterfactual simulation
model (CSM) of causal judgments about dynamic physical
events. In line with dependence theories, the CSM assumes that
judging whether one billiard ball A caused another ball B to go
through a gate requires comparing what actually happened with
what would have happened if ball A had not been present in
the scene. In line with process theories, the CSM assumes that
people’s understanding of the underlying physical processes
guides their mental simulations. Gerstenberg, Goodman, et al.’s
(2021) experiments show that people’s causal judgments are
closely related to their beliefs about what would have happened
in the relevant counterfactual situation. The more certain
people are that the outcome would have been different without
ball A, the more they judge that ball A caused the outcome.
Gerstenberg et al. (2017) showed that people spontaneously
engage in counterfactual simulation when making causal judg-
ments as evidenced by their eye movements. People do not just
look at what actually happened; they look at where ball B
would have gone if ball A had not been present in the scene
(see also Gerstenberg, in press).

Sustaining Causation and Physical Support

Gerstenberg, Goodman, et al. (2021) asked participants to judge
whether something caused an outcome or prevented it from happen-
ing. Gerstenberg and Stephan (2021) used the CSM to explain par-
ticipants’ causal judgments about omissions. They showed
participants video clips in which ball B went through a gate (or
missed the gate), while ball A was just lying still in the corner of
the scene. Participants judged whether ball B went through the
gate (or missed the gate) because ball A did not hit it. As predicted
by the CSM, participants’ causal judgments increased the more
likely it was that the outcome in the counterfactual situation (in
which ball A had hit ball B) would have been different from what
actually happened.

Here, we build on the CSM and apply it to understanding peo-
ple’s judgments of physical support. Judging physical support is
closely related to judging causation. Table 1 categorizes different
types of causal relationships based on the presence or absence of
the cause and effect events. Gerstenberg, Goodman, et al. (2021)
focused on situations in which the cause event was present and it

either prevented the effect event (absent) or caused it to happen
(present). Gerstenberg and Stephan (2021) looked at situations
in which the cause event was absent and the effect event was
present. In this paper, we fill in the table’s missing cell: situa-
tions in which there is neither a cause event nor an effect
event. We will call this type of causal relationship “sustaining
causation.”

In our experiments, participants view images of static scenes
depicting a tower of blocks. In these images, there are no events
—at least not in the psychological sense of events capturing state
changes (Glymour et al., 2010; Lewis, 1986a; Schaffer, 2016;
Zacks & Tversky, 2001). The tower just stands still and nothing
is moving. Nevertheless, we may wonder how responsible a partic-
ular block is for another block’s staying on the table on which the
block tower rests. Is block A a sustaining cause of block B’s stay-
ing on the table? The CSM answers this question by simulating
what would happen if block A were removed from the scene.
The more certain it is that block B would fall off the table in
that case, the more responsible block A is for block B’s staying
on the table. Another way of putting it is that a sustaining cause
prevents an alternative outcome from happening. Block A is
responsible to the extent that it prevents block B from falling off
the table.

Process theories of causation most naturally apply to situations in
which both the cause and effect events are present (i.e., the bottom
right cell in Table 1). These theories generally struggle when
absences are involved because an absence transfers no force
(although see Wollff et al., 2010). The case of sustaining causation
is particularly troublesome for process theories. Process theories
rely on a transfer of a property, such as physical force, from one
object to another (Wolff, 2007). While physical forces are clearly
at play in keeping a block tower stable, they do not transfer between
the objects as characterized by process theories. Counterfactual the-
ories, such as the CSM, apply more flexibly to the different types of
causal relationships. According to the CSM, judging sustaining cau-
sation requires going beyond what can be directly perceived. To see
whether counterfactual simulations are necessary for capturing peo-
ple’s judgments, we compare the CSM with an alternative model
that relies exclusively on visual information that’s present in the
scene.

The notion of sustaining causation has received little interest
in work on causal cognition so far. In philosophy, Ross and
Woodward (2021) have discussed sustaining causation in the context
of reversible causal relationships. Causal relationships are reversible
when an earlier change can be undone at a later point in time. For
example, a light switch is a sustaining cause of the light. The light
is on when the switch is on, and off when the switch is off. The
light switch is also a reversible cause: one can go back and forth
between the light’s two different states by flipping the switch. In
the block towers we focus on, there is sustaining causation without
reversibility—one often cannot reconstruct a tower by putting the
block back to where it was before because the tower may have
collapsed.

While there are many different ways in which a cause can sustain a
particular outcome, we focus here on physical support. That said, in
our experiments, we do not ask participants directly about physical
support. Instead, we ask them to judge the extent to which one
block was responsible for other blocks (or one specific block) stay-
ing on a table on which the blocks are stacked. The CSM captures
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Table 1

Different Types of Causal Relationships Based on the Absence or Presence of Cause Events and Effect Events

Effect event

Cause event Absent

Present

Absent
Present

Sustaining causation

Prevention (Gerstenberg, Goodman, et al., 2021)

Causation by omission (Gerstenberg & Stephan, 2021)
Causation (Gerstenberg, Goodman, et al., 2021)

Note. The citations point to prior work that has used the counterfactual simulation model (CSM) to explain these kinds of causal

relationships.

these responsibility judgments by simulating whether the presence
of the block prevents the other blocks from falling off. “Physically
supporting” is subtly different from “preventing from falling”: The
Oxford Dictionary defines “to support” as “bear all or part of the
weight of; hold up,” and gives the example of “the dome was sup-
ported by a hundred white columns.” In many situations, judgments
about physical support and responsibility are likely to go together.
However, they may also come apart. For example, it is possible
that object A prevents object B from falling off the table even though
object B is below (or to the side of) object A. In these situations, it
would not seem right to say that object A supports object B. Physical
support seems to have two requirements: (a) A supports B when A
plays a role in preventing B from falling (or moving), and (b) A is
positioned underneath B. The model we develop below is a model
of the first component of physical support. We return to the question
of how physical support, responsibility, and preventing from falling
are related in the “General Discussion” section.

To sum up, the main idea is that people judge physical support by
considering whether the candidate object prevents others from fall-
ing. Doing so requires mentally simulating what would happen if the
object were removed. Judging physical support is like playing Jenga
in your mind (Figure 1, bottom).

The Counterfactual Simulation Model

The CSM predicts people’s judgments about how responsible one
object is for the stability of another object, or several other objects.
At the core of the CSM is a noisy physics engine that supports inter-
ventions on the scene, such as removing an object, and running
approximate simulations of what would happen (Sanborn &
Chater, 2016). We apply the CSM to block towers like the one
shown in Figure 2. We probe the CSM in several ways, asking it
to predict which blocks would fall if the black one were removed
(selection), how many of the blocks would fall ( prediction), and
how responsible the black block is for the red blocks staying on
the table (responsibility).

Scope of the Model

Before describing in more detail how the CSM works, we first
clarify its scope.

Block Towers as a Case Study

Physical support is a broad concept: it applies to blocks support-
ing one another in a tower, but also to monitors on arms on tables, to
the foundation and structure of a house, and to the stability of a surfer
on a wave. Ultimately, we aim to better understand how people think

about all the different ways in which physical support grounds out in
the world. Here, our model focuses on a constrained setting: physical
support in the context of block towers (see Figure 2).

We believe that the core foundations on which the CSM rests are
relevant beyond the case study of block towers. The CSM makes
three core assumptions about how people reach a causal judgment
in a particular situation: (a) people represent the situation with a
mental model, (b) they imagine a counterfactual intervention on
that mental model, and (c) they mentally simulate what the conse-
quences of this counterfactual intervention would be. On this
computational-level description, we are committed to the CSM’s
core assumptions. In order to apply the CSM to any given situa-
tion, the three components have to be implemented—and there
are many possible ways of doing so. We briefly motivate our
choices below.

Mental Model

We assume that people’s mental model of the situation is similar
to the kinds of physics engines that are used in video games for sim-
ulating realistic physical interactions (Gerstenberg & Tenenbaum,
2017; Smith et al., in press; Ullman et al., 2017). These game
engines represent the physical scene as comprised of objects with
attributes (such as friction and mass) and the physical forces that
apply to these objects (such as gravity and collisions). If all the rel-
evant physical parameters of the scene are fully specified (including
the objects’ mass and friction, their exact position and size, the elas-
ticity that determines the “bounciness” of collisions, etc.), and if
there is no ambiguity about what it means to remove an object
from the scene (e.g., just making it disappear), then there is a deter-
ministic ground truth answer to the question of what would happen.
However, people do not have access to this ground truth. Various
sources of uncertainty affect people’s judgments (Battaglia et al.,
2013; Smith & Vul, 2013). What these sources of uncertainty are
will depend on the characteristics of the scene, and the task at
hand. While we assume that people construct a mental model of
the scene, we do not provide an answer to the question of how people
learn these mental models (see Bramley et al., 2018; Rule et al.,
2020; Ullman & Tenenbaum, 2020; Yi et al., 2019).

Using a physics engine as an approximation to people’s mental
model of the physical world is very helpful. It allows us to imple-
ment a concrete model that yields quantitative predictions that can
be tested against people’s judgments. That said, people’s mental
models may be quite different from physics engines. For example,
it is possible that people do not explicitly represent all the objects
in the scene (Ludwin-Peery et al., 2021), or that they represent the
various kinds of forces that act upon the objects differently. We
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Figure 1
Stacked Towers

Note.

Wy :
N

Top: real-life examples of towers, built from different materials. Left to right: Leaning Tower of Pisa; a carefully balanced rock cairn; a child stacking

toy blocks. Bottom: The process of removing a block from a tower in the Jenga game. In the game Jenga, the goal is to remove a block from a stable tower and
to put it on top without making the tower fall (unlike what happened here). See the online article for the color version of this figure.

use the physics engine as a useful tool for implementing the idea that
people build a mental model of the scene.

Counterfactual Intervention

We assume that when people evaluate how responsible the black
block is for the other blocks staying on the table, they consider to
what extent the black block prevents the other blocks from falling
off the table. Similarly, we assume that to assess prevention, people
consider what would happen in the counterfactual situation in which
the black block were not there. There are many possible ways of con-
struing such a counterfactual situation. For example, people could
imagine that the black block just magically disappeared. Or they
could imagine that it was pulled out of the tower in a certain way,
similar to how one would remove a piece from a Jenga tower (see
Figure 1). The CSM implements the counterfactual intervention in
a way that accounts well for participants’ judgments in our experi-
ments. However, it is very that people differ in what counterfactual
comes to mind (Kominsky & Phillips, 2019; Phillips & Knobe,
2018).

When judging causation in dynamic scenes, people need to
consider what would have happened if something in the past
had been different (Gerstenberg, in press; Gerstenberg,
Goodman, et al., 2021; Gerstenberg et al., 2017). When judging
support in static scenes, people need to consider what would hap-
pen if something in the present were different. The question we

ask participants in our experiments (“How many of the red bricks
would fall off the table, if the black brick wasn’t there?”) sits right
in the middle between a future-directed hypothetical question
(“How many of the red bricks will fall off the table, if the black
brick isn’t there?”) and a clearly counterfactual question (“How
many of the red bricks would have fallen off the table, if the
black brick hadn’t been there?”). We believe that in our setting,
participants would give the same response to any of these three
versions of the question. Because of the static nature of the
scene, counterfactual and hypothetical questions do not come
apart (see Gerstenberg, in press). To highlight the continuity
with our prior work (Gerstenberg, Goodman, et al., 2021), we
chose to call our model the CSM, rather than a hypothetical sim-
ulation model.

Mental Simulation

We assume that people assess what would have happened in the
relevant counterfactual situation by running a simulation in their
mind (Gerstenberg & Tenenbaum, 2017; Kahneman & Tversky,
1982). Some of the most direct evidence for mental simulation
comes from eye-tracking studies (Ahuja & Sheinberg, 2019;
Beller et al., 2022; Crespi et al., 2012; Gerstenberg et al., 2017).
For example, Gerstenberg et al. (2017) asked participants to
judge whether ball A caused ball B to go through a gate in a
dynamic video clip. Participants’ eye movements revealed that
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Figure 2

Schematic Illustration of the Counterfactual Simulation Model (CSM) Applied to a Block Tower
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Note. Given a scene as input (top left), the CSM answers the question of how responsible the black block is for the

red blocks staying on the table. It does so by simulating counterfactual rollouts of what would happen if the black
block was removed. The CSM runs a large number of simulations, each time applying noise in several ways to cap-
ture different types of uncertainty that the observer has about the scene. After each simulation, the model records
which red blocks fell off the table. The CSM predicts that the extent to which the black block is responsible for
the red blocks staying on the table is linearly related to the average proportion of red blocks that would fall off
the table, across all simulations. The CSM considers three sources of uncertainty that influence an observer’s mental
simulations about what would happen. Each source of uncertainty is modeled by introducing a small amount of ran-
dom noise into the simulation. (A) Perceptual noise translates all blocks horizontally by a small amount. (B)
Intervention noise applies impulses to blocks that are above the black block. (C) Dynamic noise perturbs the normal
forces applied to blocks during collisions. For each source of uncertainty, one free parameter determines how much
noise is applied. You can play around with the model parameters and see the CSM in action here: https:/cicl-stanford

.github.io/mental_jenga/interface. See the online article for the color version of this figure.

they did not just look at the balls; they also looked at where ball B
would have gone if ball A had not been present in the scene. Other
evidence for mental simulation comes from studies in which sim-
ulation models better accounted for participants’ judgments than
alternative models that did not rely on simulation (e.g., Battaglia
et al., 2013; Gerstenberg, Siegel, et al., 2021; Rajalingham et al.,
2021; Smith et al., in press; Smith & Vul, 2013).

While simulation models are powerful tools for modeling peo-
ple’s judgments, they have limitations. For one, we do not know
exactly what people’s mental simulations actually look like.
Ludwin-Peery et al. (2021) have shown that people make judg-
ments about physical scenarios that violate the predictions of cer-
tain simulation models (see also Ludwin-Peery et al., 2020). For
simulation models to yield graded predictions about people’s judg-
ments, the developers of these models make assumptions about

possible sources of uncertainty in people’s mental simulations.
Often it is the case that these sources of uncertainty are underdeter-
mined by the data. For example, uncertainty about what would hap-
pen if a block was removed from the tower could be modeled by
adding uncertainty in how the object collisions play out, or in the
amount of friction that is present between the objects. The CSM
implements these mental simulations in a way that accounts well
for people’s judgments, but it is possible that the actual mental sim-
ulations that people run are quite different from that particular
implementation.

We will now describe our implementation of the CSM. We first
lay out how the CSM implements uncertainty about the counterfac-
tual simulations. Then, we explain how the CSM uses counterfactual
simulations to make predictions about the different kinds of judg-
ments in our experiments.


https://cicl-stanford.github.io/mental_jenga/interface
https://cicl-stanford.github.io/mental_jenga/interface
https://cicl-stanford.github.io/mental_jenga/interface
https://cicl-stanford.github.io/mental_jenga/interface
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Sources of Uncertainty in Counterfactual Simulation

We distinguish three sources of uncertainty: perceptual uncer-
tainty about the position of each object, intervention uncertainty
about how the black block is removed, and dynamic uncertainty
about how the physical scene will unfold after the black block is
removed.

Perceptual Uncertainty

Participants are told that the initial scene is stable. However, they
may still be uncertain about the exact position of each block
(Battaglia et al., 2013; Smith & Vul, 2013). Figure 2A illustrates
how this uncertainty is implemented in our model: the CSM takes
the ground truth configuration of blocks (shown faintly in the back-
ground) and applies a small horizontal perturbation to each block’s
position, randomly moving some of the blocks to the left, and some
to the right. The magnitude of this perturbation is sampled from a
Gaussian  distribution/V (0, plindependently for each block.
Moving the blocks this way will cause some shifting of relative posi-
tioning and contact points. As a consequence, some of the scenes
would no longer be stable after perceptual noise has been applied.
To account for the fact that participants know that the initial scene
is stable, we put all of the blocks to “sleep” after the perceptual
noise is applied (see Ullman et al., 2017). A block that is asleep
stays exactly where it is and only wakes up once another block col-
lides with it.

Intervention Uncertainty

In addition to uncertainty about the blocks’ positions, the CSM
also assumes uncertainty about how the counterfactual intervention
would occur. In our experiments, we ask participants to consider
what would happen if the black block was not there. We do not spec-
ify explicitly how this counterfactual state would come about. It is
possible, for example, that some participants imagine that the black
block simply disappeared while others imagine physically removing
the block by pulling it out. We implemented intervention uncertainty
by applying small, roughly upwards-directed impulses to red blocks
located above the black block, mimicking the disturbance that would
be caused if the black block were manually removed from the scene
(Figure 2B).

First, the black block is removed from the scene by making it dis-
appear. Then, a random impulse is applied to all the blocks that were
located above the black block. The angle of the impulse is the same
for all the blocks, but the magnitude differs (see the dotted arrows in
Figure 2B, showing the impulses applied to the red blocks in two
possible simulations). The angle is drawn uniformly from
[—m/4, /4] around the vertically upward direction. The magnitude
of the impulse applied to each block is drawn independently from I"
(Bi» 1) where I'(k, ) is a Gamma distribution with shape parameter k
and scale parameter .

Overall, our implementation of intervention noise captures the
idea that, like in Jenga, the blocks above the intervened-on block
are most directly affected by its removal. Figure 2B illustrates our
criteria for whether one block is above another. In this example,
block A is above the black block because (a) the two blocks contact
each other, and (b) at the contact point between the two blocks, block
A is on top of the black block. This rule is then applied recursively to
find all blocks that are above the black block. So in this same

example, blocks A, B, and C are above the black block, and an
impulse is applied to each of them after the black block is removed.

Dynamic Uncertainty

After the black block is removed, the physics engine simulates the
dynamics of how the scene would unfold. Again, we assume that
people have some uncertainty about how these dynamics would
play out (Allen et al., 2020; Smith & Vul, 2013). The CSM models
this dynamic uncertainty by adding noise to collisions as illustrated
in Figure 2C. Each dotted arrow shows different samples of how the
collision between the two blocks could produce different resulting
trajectories. To model dynamic uncertainty, the CSM applies
noise to the ground truth normal force that results from two objects
coming into contact with one another. The model perturbs the direc-
tion of that force (without changing the magnitude): for a normal
force expressed in polar coordinates as F = (F, 0), we alter it so
that F' = (F, 8+ o), where ~ N(0, ).

We will show below that a CSM that includes these different
sources of uncertainty captures people’s judgments to a high degree
of quantitative accuracy. Of course, this does not mean that these are
the only plausible sources of uncertainty. For example, the model
does not consider people’s uncertainty about underlying physical
parameters such as the level of friction, or the bounciness of the
blocks. It is possible that an alternative noisy simulation model cap-
tures participants’ judgments even better than the one we
developed.

Because the model only includes a small subset of the potential
sources of uncertainty that affect people’s physical predictions,
this subset will have to make up for any remaining uncertainty not
modeled in our implementation. What this means in practice is
that the degree of noise the model applies is likely exaggerated.
For example, it is possible that the perceptual uncertainty that partic-
ipants have about the exact location of each block is less than what
the best-fitting model assumes. A model that included even more
sources of uncertainty (such as uncertainty about object friction)
may predict participants’ judgments better with a lower degree of
perceptual uncertainty.

Our goal is not so much to determine exactly which sources of
noise best capture people’s predictions about what would happen.
Instead, our main focus is to establish the relationship between
counterfactual simulation and responsibility judgments. The
model we illustrate here is just one proposal for how these counter-
factual simulations may play out: one that we believe strikes a good
balance between simplicity and complexity, and one that includes
intuitively plausible sources of uncertainty. We employ model
comparison techniques to justify this trade-off between simplicity
and complexity. We return to the question of how other sources of
uncertainty may affect people’s mental simulations in the “General
Discussion” section.

From Counterfactual Simulations to Predictions and
Responsibility

In Experiments 1 and 2, we probed participants’ physical scene
understanding in three different ways (see Figure 3). In the selec-
tion condition, participants selected which blocks would fall off
the table if the black block was not there. In the prediction condi-
tion, participants indicated how many blocks would fall off the
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Figure 3

Schematic of the Different Experimental Conditions in Experiments 1 and 2

a) selection

b) prediction

c) responsibility

Please click on the red bricks that
would fall off either side of the table if
the black brick wasn’t there.

Note.

How many of the red bricks would fall o ff
the table, if the black brick wasn’t there?

(I)'QIIII

Participants were asked to either (A) select which blocks would fall if the black block was not there by click-

How responsible is the black brick for
the red bricks staying on the table?

L e N e I ‘ |

10 notatall very much

ing on the blocks (selection), (B) judge on a slider how many blocks would fall (prediction), or (C) judge on a slider
how responsible the black block is for the red blocks staying on the table (responsibility). See the online article for

the color version of this figure.

table. In the responsibility condition, participants judged to what
extent the black block was responsible for the red blocks staying
on the table. In Experiment 3, participants were asked about the
relationship between two specific blocks. In this experiment, par-
ticipants either predicted whether the white block would fall off
the table if the black block were removed ( prediction condition)
or judged to what extent the black block was responsible for the
white block staying on the table (responsibility condition).

Figure 2 illustrates how the CSM yields graded predictions about
how likely the different red blocks would fall off the table if the black
block were removed. The model begins with an accurate encoding of
the scene.' It then simulates the removal of the black block under dif-
ferent sources of uncertainty as described above. Each noisy simula-
tion yields a potentially different result. For example, in one
simulation a particular block may fall off the table, whereas in
another simulation the same block may remain on the table. The
model runs many of these noisy simulations and records for each
block in each simulation whether or not it fell. The model’s graded
prediction about whether a particular block will fall is then simply
the proportion of times in which this block fell across the noisy sim-
ulations (see Figure 2, top right).

To predict which blocks participants will select in the selection
condition, the CSM uses the proportion of times with which each
block fell off the table across the noisy simulations. To model partic-
ipants’ predictions in the prediction condition, the CSM uses the
average number of blocks that fell across all of the simulations.
Finally, to model participants’ judgments in the responsibility con-
dition, the CSM computes a linear mapping from the proportion
of blocks that would fall off the table. For example, the black
block would be more responsible if three out of four blocks were
to fall off the table compared to five out of ten blocks.”

Features Model

As an alternative to the CSM, we consider a features model that
captures participants’ judgments based on features of the scene.
This model assumes that people’s counterfactual judgments are

not based on simulating what would happen to the blocks, but
instead that they form judgments of whether blocks would fall
using heuristics that rely on the current scene state. We implement
this model by fitting a logistic regression from a collection of fea-
tures to participants’ predictions of how likely individual red blocks
are to fall. This model then uses a linear mapping from the propor-
tion of blocks that would fall off the table to predict participants’
responsibility judgments, just like the CSM.

Table 2 shows which features the model uses to predict whether or
not a red block would fall if the black block was removed. There are
three categories of features: Scene features capture aspects of the
whole scene such as how many blocks are present. Black block fea-
tures capture aspects about the black block such as its vertical posi-
tion and how many blocks are above it. Other block features capture
aspects about the other (non-black) blocks such as their distance
from either edge of the table.

Some of the features encode information about the vertical posi-
tion of the blocks, their distance to the edge, and their rotation.
Other features encode more higher-level information such as the
total number of blocks in the scene, the number of red blocks that
are above the black block (using the same definition of “above” intro-
duced earlier), and whether or not a red block was in the same pile of
blocks as the black block (which we encoded by recursively checking
whether a block makes contact with the black block, or with a block
that makes contact with the black block, and so on). The features
model thus contains both low-level features as predictors as well as
more abstract rules. Importantly, all of its features can be computed

" The stimuli were implemented with Box2D (https:/www.npmjs.com/
package/box2d) and visualized with IvanK (http:/lib.ivank.net). The physics
simulations, including the removal of the black block and the addition of dif-
ferent types of noise, were performed with Box2D’s engine. Further details
about the implementation including are available online at https:/github
.com/cicl-stanford/mental_jenga.

2 Using the proportion of blocks that would fall is consistent with Battaglia
etal. (2013) who also mapped the proportion of blocks that will fall across the
simulations to people’s predictions about the tower’s stability.


https://www.npmjs.com/package/box2d
https://www.npmjs.com/package/box2d
https://www.npmjs.com/package/box2d
https://www.npmjs.com/package/box2d
https://www.npmjs.com/package/box2d
http://lib.ivank.net
http://lib.ivank.net
http://lib.ivank.net
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Table 2
List of Features Used by the Features Model
Type Name Description
Scene avg y Average vertical position of the blocks in the tower
avg edge dist Average horizontal distance of each block from the nearest table edge
avg_angle Average angular deviation of each block from either a fully horizontal or vertical position
n blocks Total number of blocks, excluding the black block, in the tower
Black black y Vertical position of the black block
black edge dist Horizontal distance of the black block from the nearest table edge
black angle Angular deviation of the black block from either a fully horizontal or vertical position
black above Number of blocks above the black block
Other other y Vertical position of the block
other edge dist Horizontal distance of the block from the nearest table edge
other angle Angular deviation of the block from either a fully horizontal or vertical position
other black pile Whether the block is in the same pile as the black block
Note. The “Type” column indicates whether the feature captures something about the scene, the black block, or the other blocks. The

“other” blocks refer to the red blocks in Experiments 1 and 2, and to the white block in Experiment 3. In Experiment 3, the “other”” white

block was always in the same pile as the black block.

directly from the image. They do not encode any unobservable phys-
ical information (such as the forces the blocks exert on each other), or
information that relies on running physical simulations of the scene.
When constructing the features model, we tried our best to find fea-
tures that predicted participants’ judgments. From a large set of initial
features, we selected a subset of features using the following two cri-
teria: (a) the feature had to be sufficiently predictive in at least one of
the experiments (r > |0.1, see Table 3), and (b) the feature did not
strongly correlate with any other feature (r < 0.8, see Table Al).

Parameter Fitting and Model Evaluation

The CSM and the features model have a number of free parameters
that need to be fitted to the data. We fit the model parameters to one

Table 3

large dataset that combined participants’ selections from
Experiments 1 and 2, and their predictions from Experiment 3. The
selection data provides a strong test for the models as they need to pre-
dict for each block whether participants think that it would fall or stay
on the table. Our implementation of the CSM has up to three free
parameters: one each for the perceptual noise, intervention noise,
and dynamic noise. For any given set of the model parameters (3,
Bis Ba), the CSM predicts how likely each of the red blocks would
fall off the table (see Figure 2, top right). To obtain numerical predic-
tions for each block, we ran 200 simulations for each parameter set-
ting. We fit the CSM’s parameters by maximizing the likelihood of
the data, using a grid search over a wide range of possible noise param-
eter values. To find the best-fitting parameters of the features model,
we performed a logistic regression on the data. The features model has

Correlation Coefficients Between Individual Features (or Sets of Features) With Participants’
Selection Judgments in Experiments 1 and 2 and Their Predictions in Experiment 3

Name Experiment 1 Experiment 2 Experiment 3 All
avg y .16 —.01 .09 .08
avg edge dist 11 —.05 —.07 .09
avg_angle .04 12 —.04 13
n _blocks -.03 —.13 .20 —.06
scene features 23 15 23 23
black y -.02 —.31 -.17 -.23
black edge dist .03 13 —.26 10
black angle .05 02 -.29 05
black above .07 37 .05 27
black block features .10 39 40 30
other y .68 39 57 52
other edge dist —.08 —.26 - .21 —.13
other angle 24 —.01 17 16
other black pile .04 18 — 17
other block features 15 56 18 63
all features .78 .69 .84 71

Note.

The scene features, black block features, other block features, and all features rows show how well

the predictions of regression models that combine these features correlate with participants’ judgments. See
Table 2 for a description of each feature. We fitted the features model separately on data from each
experiment, or on the combined data from all three experiments (the “All” column).
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13 free parameters: one for each of the features, plus one for the inter-
cept. When discussing the results from individual experiments, we
report the results of the CSM and the features model that were fitted
to all three experiments. We will report Pearson’s correlation (r) and
root mean squared error (RMSE) as measures of fit to determine
which model better accounted for the data.

In a separate section on “Model comparison,” we then report the
results of cross-validation analyses that compare the features model,
the full CSM, as well as lesioned versions of the CSM that only
include a subset of the different sources of uncertainty.
Cross-validation naturally handles the inherent trade-off between
model complexity and fit to the data. We find that the full CSM
best accounts for participants’ responses.

Experiment 1: A Wide Array of Block Towers

In this experiment, participants viewed a variety of block towers
like the ones shown in Figure 4. The experiment had two main
goals. First, we wanted to test to what extent the CSM and the fea-
tures model can capture people’s beliefs about which blocks
would fall off the table if the black block were not there. The results
of this comparison provide insight into the role of mental simulation
in people’s judgments. Second, we wanted to test the purported rela-
tionship between counterfactual predictions and judgments of
responsibility. We predicted a close mapping between the counter-
factual predictions of one group of participants and the responsibility
judgments from another group of participants. The greater the pro-
portion of blocks predicted to fall if the black block was not there,
the more responsibility should be assigned to the black block.

Method

All experiments reported in this paper have received approval
from MIT’s institutional review board (COUHES #0812003014:
Learning and Reasoning with Words and Concepts).

Participants

One hundred twenty-one participants (Mage = 34, SDyo. = 12, 74
men, 47 women) were recruited via Amazon Mechanical Turk using
psiTurk (Gureckis et al., 2016) and randomly assigned to one of the
three experimental conditions: selection (N = 38), prediction (N =
42), and responsibility (N = 41). We excluded participants from further
analysis based on a catch trial described below. No participant failed the
catch trial in the selection condition, 11 participants failed in the predic-
tion condition (leaving N =31), and six participants failed in the
responsibility condition (leaving N = 35).

Design

Experiment 1 consisted of three conditions illustrated in Figure 3. In
the selection condition (Figure 3A), participants were asked to “Please
click on the red bricks that would fall off either side of the table if the
black brick wasn’t there.”® Participants were free to select any number
of blocks. They could also select no blocks if they believed that none
would fall. In the prediction condition (Figure 3B), participants were
asked: “How many of the red bricks would fall off the table if the
black brick wasn’t there?” Participants provided their answers on a slid-
ing scale ranging from 0 to the number of red blocks present in the scene
in steps of 1. For example, for the tower shown in Figure 4A, the slider

ranged from 0 to 7 whereas for Figure 4C, it ranged from O to 12. In the
responsibility condition (Figure 3C), participants were asked: “How
responsible is the black brick for the red bricks staying on the table?”
They responded on a sliding scale that ranged from not at all to very
much (coded from 0 to 100 for the purpose of analysis).

We generated 42 towers of blocks that served as the stimuli for
Experiment 1. To generate the stimuli, we randomly dropped 19
red blocks and one black block from above the tabletop. As a result,
some of the blocks would fall off the table, whereas others would
remain on the table and settle into a stable configuration. We
repeated this process many times and then selected 42 tower stimuli
for the experiment using the following criteria: (a) the black block
was still on the table, (b) the number of red blocks varied between
the scenes (ranging from 4 to 19), and (c) the number of red blocks
that would fall off the table if the black block was removed varied
between the scenes (ranging from O to 8).

Procedure

The procedure for all three conditions was largely identical.
Participants first received instructions about the task. They then
saw a number of warm-up animations that showed 20 blocks being
dropped on the table from above. These animations were shown to
familiarize participants with the relevant physical properties such
as gravity, the friction between the blocks and the table, and the elas-
ticity that influences how the block collisions play out. Participants
proceed to the next stage once they had watched at least five anima-
tions. In order to go to the main experiment phase, participants had
to successfully answer a comprehension check question about the
task. If they answered the comprehension check question incorrectly,
they were redirected to the instructions.

After the instruction phase, participants saw 42 images of differ-
ent towers of blocks in randomized order (see Figure 4 for exam-
ples). The stimuli varied the number of blocks on the table (M =
13.7, SD = 3.3, range = 7-20), as well as the number of red blocks
that would fall off the table if the black block was removed according
to ground truth (M =2, SD = 2.1, range = 0-8). Participants’ tasks
differed depending on the condition as described above. The exper-
iment included a catch trial in which the black block was standing on
its own (shown in Figure 4G) that we used as an exclusion criterion.
Participants were excluded from the analysis if they selected that one
of the red blocks would fall in that trial, if they predicted that one or
more blocks would fall, or if they assigned a responsibility value >
15. At the end of the experiment, participants were asked to provide
open-ended feedback about the task as well as demographic infor-
mation. On average, the experiment took 15.71 min (SD = 8.31) to
complete in the selection condition, 9.86 min (SD = 6.49) in the pre-
diction condition, and 8.88 min (SD = 8.90) in the responsibility
condition.

Results

Figure 5 shows participants’ responses for a selection of trials
together with the predictions of the CSM and the features model.

3In the experiments, we referred to the objects as “bricks” (rather than
blocks). However, in this paper, we use the more generic term “blocks”
unless we directly quote the questions that participants were asked in the
experiments.
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Figure 4
Experiment 1

a) b)

Note.

Example stimuli. Red outlines indicate blocks that would fall off the table if the black block was not there and black outlines indicate the blocks that

would stay on the table. The outlines were not shown in the experiment. See the online article for the color version of this figure.

For each trial, the top row shows the CSM predictions, the middle
row shows the features model predictions, and the bottom row
shows aggregated participant responses. We will now discuss the
results of each condition in turn, using these trials as illustrative
examples.

Selection Condition

In the selection condition, participants were asked to click on each
block that would fall off the table if the black block were not there.
The numbers on the blocks in the bottom row of Figure 5 show the
percentage of participants who selected each of the different blocks
for five of the trials. For example, in the trial shown in Figure 5A,
92% of the participants selected the block on the left edge of the
table, and only 16% of participants selected the block on the right
side of the table. The top row in Figure 5 shows the CSM’s predic-
tions, and the middle row shows the predictions of the features
model. Both models capture participants’ responses in some trials,
but not in others. For example, in Panels A and B of Figure 5, the
CSM'’s predictions closely match participants’ selections while the
features model’s predictions are not as accurate. On the other
hand, in Figure 5C, the features model does a better job matching
the probabilities for the red blocks near the left edge. In
Figure 5D, both the CSM and the features model closely match par-
ticipants’ selections. In contrast, in Figure SE, both models fail to
match participants’ responses. Neither model captures participants’
belief that the three blocks above the black block would almost cer-
tainly fall.

Panels A and D of Figure 6 show how well the CSM and the
features model capture participants’ selections across all the red
blocks in all of the trials. Table 3 shows how well individual fea-
tures and sets of features correlate with participants’ selections.
The y-position of a red block is a good predictor for whether a
block will be selected by participants: blocks with a higher
y-position are more likely to be selected.

Overall, the CSM does a better job of fitting participants’ selec-
tions than the features model.* However, each model is somewhat
biased in its predictions about blocks that people think are unlikely
to fall. There are a number of blocks for which the CSM is certain
that they wouldn’t fall but for which participants believe that they
might fall (see the black dots in the bottom left corner in
Figure 6A extending from y = 0% to y = 25%). In contrast, the fea-
tures model tends to predict that blocks would fall for which partic-
ipants are fairly certain that they will not (see the black dots in the

bottom left corner in Figure 6D extending from x = 0% to
x = 25%).

To get a sense of how well participants were doing in the task, we
calculated their accuracy relative to ground truth. The overall accu-
racy is given by the percentage of times in which a participant cor-
rectly selected a block that falls, and did not select a block that
doesn’t fall. Participants’ selections were 77% accurate (67% for
blocks that would fall, and 79% for blocks that would not fall).
For comparison, the CSM’s accuracy was 79% (59% would fall,
83% would not fall) and the features model’s accuracy was 72%
(46% would fall, 77% would not fall).

Prediction Condition

In the prediction condition, participants were asked to predict how
many red blocks would fall off the table if the black block were not
there. The CSM which best accounted for participants’ selections,
also captures much of the variance in participants’ judgments of
how many blocks would fall (Figure 6B). The features model does
not correlate as well with participants’ prediction judgments,
although it is somewhat less biased (Figure 6E). While both the
CSM and the features model tend to underpredict how many blocks
would fall compared to participants, this bias is greater in the CSM
when compared to the features model.

As Figure 7A shows, there was a tight relationship between the
average proportion of blocks that participants selected in the selection
condition and the proportion of blocks predicted to fall in the predic-
tion condition. Overall, the two ways of probing participants yielded
very similar results. However, participants in the prediction condition
tended to predict that a larger proportion would fall than participants
in the selection condition selected, as indicated by the fact that the
regression line in Figure 7A is slightly above the diagonal.

Responsibility Condition

In the responsibility condition, participants were asked to judge
the extent to which the black block was responsible for the red
blocks staying on the table. To account for the fact that different

“Instead of reporting frequentist statistics to compare the models here, in
the “Parameter Fitting and Model Comparison” section before the
“General Discussion” section, we report the results of a cross-validation
that compares how well the different models do across the three experiments
in this paper.
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Figure 5

Experiment 1: Participants’ Selections of Which Blocks Would Fall (Bottom Row) Together With the Predictions of the Features Model
(Middle Row) and the Counterfactual Simulation Model (CSM, Top Row)

CSM

features model

prediction: 5.2 blocks
responsibility: 52

prediction: 5.9 blocks
responsibility: 53

prediction: 6.3 blocks
responsibility: 62

prediction: 3.5 blocks
responsibility: 73

prediction: 6.1 blocks
responsibility: 65

79184

71

Note.

The numbers on each block indicate the percentage of participants who thought that this block would fall off the table if the black block was removed

(bottom row) or the predictions by the two different models (middle and top row). The bottom row also shows (in text) the average number of blocks that
participants predicted would fall, and how responsible the black block was judged for the red blocks to stay on the table. The color fill gradient of the blocks
maps onto 0 (red) and 100 (white). A bright red outline on a block indicates that a block would fall off the table according to ground truth. The outlines were not

displayed in the experiment. See the online article for the color version of this figure.

scenes have a different number of blocks, we used the proportion of
blocks predicted to fall (out of the total number of red blocks in the
scene) as a predictor for people’s responsibility judgments. To map
from predictions to responsibility judgments, we fit a linear regres-
sion from the proportion of blocks participants predicted to fall to
their responsibility judgments. Figure 7B shows that the predictions
from one group of participants are closely related to the responsibil-
ity judgments from another group (r = .84). This result is consistent
with the idea that when evaluating how responsible the black block
is, participants consider what proportion of other blocks would fall
if it were removed. We apply the same linear transformation that
maps from participants’ predictions to responsibility judgments
for both the CSM and the features model. Panels C and F of
Figure 6 show how well the CSM and features model capture

participants’ responsibility judgments, respectively. While the
CSM achieves a higher correlation than the features model, the fea-
tures model has a lower error.

Table 4 shows how well individual features and sets of features
correlate with participants’ responsibility judgments, as well as the
predictions of regressions that combine several features. The combi-
nation of scene features was a good predictor of responsibility judg-
ments. In particular, the average y-position of each block was a
strong predictor (r =.71).

Discussion

The results of Experiment 1 reveal a close mapping between coun-
terfactual predictions and responsibility judgments. The greater the
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Figure 6
Experiment 1: Scatterplots Showing the Relationship Between the Counterfactual Simulation Model (CSM) and Participants’ Judgments
at the Top, and the Relationship Between the Features Model and Participants’ Judgments at the Bottom
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The first column shows the results of the selection condition. Here, each data point represents the probability that one particular block was selected
to fall off the table (523 blocks in total across 42 trials). The second column shows the results of the prediction condition. Here, each data point represents
the average number of blocks that were predicted to fall in each trial. The red points indicate the trials from Figure 5. The third column shows the results of
the responsibility condition. Here, each data point represents the average responsibility that was assigned to the black block in that trial. The blue line in
each plot indicates the best-fitting regression line, and the blue ribbon shows the 95% confidence interval of the regression line. The error bars on the data
points indicate 95% bootstrapped confidence intervals. See the online article for the color version of this figure.

proportion of red blocks participants believed would fall if the
black block were removed, the more responsible they judged that
block to be.
The prediction and selection conditions directly tested partici-
pants’ ability to judge what would happen if the black block
were removed. Compared with the ground truth, participants in
the prediction condition were less accurate (RMSE =5.57) than
participants in the selection condition (RMSE = 2.07). Having to
decide whether or not each block would fall is likely to lead to a
more careful consideration of what would happen than merely hav-
ing to move a slider to estimate how many blocks would fall.
Participants in the selection condition also took considerably
more time to complete the experiment than participants in the pre-
diction condition. Nonetheless, there was a close relationship
between the proportion of blocks that participants thought would
fall in both the selection and prediction conditions (Figure 7A)—
and the proportion of blocks predicted to fall correlated highly
with responsibility judgments (Figure 7B).
We compared participants’ responses to the predictions from both
the CSM and the features model (Figure 6). The CSM assumes that

participants use their intuitive understanding of physics to simulate
what would happen to the red blocks if the black block were not there

(Figure 2). The features model assumes a direct mapping from visual

features to participants’ responses. Frequently, participants predicted
that blocks above the black block would fall (see Panels B and D of
Figure 5). However, there were also situations in which participants
predicted that blocks that were below the black block would fall (see
Figure 5A). And there were also situations in which participants
anticipated longer chains of causal events, where removing the
black block in one part of the tower would lead to red blocks falling
off the table on the other side (see Panels C and E of Figure 5). The
CSM captured participants’ selections well across these situations
while the features model struggled. Both models performed simi-
larly in capturing participants’ responsibility judgments. That said,
a single feature was highly predictive of participants’ judgments:
the average y-position of the red blocks. The higher up the blocks
were positioned on average, the more responsible the black block

was judged to be. In Experiment 2, we constructed novel block tow-

blocks.

ers to control for scene features such as the average y-position of the
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Experiment 1: Comparison Between Participants’ Responses in the Three Conditions
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(A) The proportion of blocks participants selected in the selection condition (x-axis) is closely related to the

proportion of blocks they predicted to fall in the prediction condition ( y-axis). (B) The (scaled) proportion of blocks
predicted to fall in the prediction condition (x-axis) is closely related to participants’ responsibility judgments
(y-axis). The scaling here is done via a linear regression that maps from the selection proportions (which range
between 0 and 1) to participants’ responsibility judgments (which range between 0 and 100). The greater the pro-
portion of blocks is predicted to fall, the more responsible the black block is judged to be. The error bars indicate
bootstrapped 95% confidence intervals, and the blue ribbons show the 95% confidence interval of the regression
lines. See the online article for the color version of this figure.

Experiment 2: Controlling for Scene Features

In Experiment 1, we tested participants’ judgments on a wide
array of randomly generated towers, and the features model captured
participants’ responsibility judgments quite well by considering
global scene features, such as the average y-position of the blocks
in the scene. Because of the way in which we generated the stimuli
in Experiment 1 (by dropping a pile of blocks from the top and wait-
ing for them to settle on the table), most of the scenes featured one
single pile of blocks. In Experiment 2, we used a more tightly con-
trolled stimulus set to make sure that global scene features are not
highly correlated with the number of blocks that would fall. We
also wanted to generate situations that featured piles of blocks that
were disconnected from one another. We constructed a set of six dif-
ferent tower configurations by hand. For each configuration, we then
chose seven positions for the black block such that removing it
would result in different numbers of blocks falling off the table in
the ground truth setting.

Figure 8 shows a subset of the stimuli that we used in this exper-
iment. Relying on scene features to predict how many blocks would
fall is now insufficient as these features are identical for each tower
configuration. Furthermore, while in Experiment 1 the blocks tended
to form a single “pile” (see Figure 4), in Experiment 2, we created
some tower configurations with disjointed sets of blocks. For exam-
ple, Towers L, II, and IV in Figure 8 feature two sets of blocks that are
disconnected from one another. In the scene shown in Figure 8A, for
instance, it is clear that the removal of the black block should only
affect the two red blocks above it. Overall, this new set of stimuli pro-
vides a stronger test for the potential role of mental simulation in par-
ticipants’ responsibility judgments.

Method
Participants

One hundred and twenty-nine participants (M,ge = 36, SDpg. = 11,
70 men, 59 women) were recruited via Amazon Mechanical Turk with
N =44 in the selection condition, N = 42 in the prediction condition,
and N = 43 in the responsibility condition. We used the same exclusion
criteria as in Experiment 1 based on the same tower shown in
Figure 4G. One participant was excluded in the selection condition
(leaving N = 43), two were excluded in the prediction condition (leav-
ing N=40), and three were excluded in the responsibility condition
(leaving N = 40).

Design and Procedure

The design, procedure, and questions were identical to those of
Experiment 1. The main difference was the set of tower stimuli
that we used this time (compare Figure 8 with Figure 4). We reduced
the table friction in the settings of the physics engine so that it was
possible for blocks to slide off the table. Participants saw 43 trials in
randomized order where one trial served as a catch trial (see
Figure 4G). On average, the experiment took 13.0 min (SD = 6.9)
to complete in the selection condition, 11.6 min (SD =5.2) in the
prediction condition, and 7.9 min (SD =3.5) in the responsibility
condition.

Results

We will again discuss participants’ selections, predictions, and
responsibility judgments in turn.
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Table 4
Correlation Coefficients Between Individual Features (or Sets of Features) With Participants’
Responsibility Judgments for Each of the Three Experiments

Name Experiment 1 Experiment 2 Experiment 3 All

avg y 71 .07 .09 28
avg_edge dist .36 —.08 -.03 .03
avg_angle —.15 .00 —.04 —.04
n_blocks 13 —.03 12 .05
scene features 71 15 17 31
black y —.21 —.74 —.26 — .64
black edge dist —.04 12 —.26 .07
black angle .05 —.04 - .31 —.03
black above A7 .84 15 .69
black block features .52 .87 43 74
other y .64

other edge dist - .01

other angle .20

other black pile

other block features 5

all features .84 .89 .82 .79

Note. The scene features, black block features, other block features, and all features columns show how
well regressions that combine these features correlate with participants’ responsibility judgments. other
block refers to the red blocks in Experiments 1 and 2, and the white block in Experiment 3. See Table 2
for a description of each feature. The table shows that which features work best differs between the
experiments. Scene features are most important for Experiment 1, black block features for Experiment
2, and other block features (i.e., the features of the white block) for Experiment 3. The other block
features only matter for Experiment 3 in which we asked participants how responsible the black block
was for the white block staying on the table. Because Experiment 3 did not feature any trials in which
the black block was in a different pile from the white block, the other_black_pile feature did not apply
here. We fitted the features model separately on data from each experiment, or on the combined data

15

from all three experiments (the “All” column).

Selection Condition

Figure 9 shows participant responses and model predictions for a
selection of stimuli. In Panels A and B of Figure 9, the CSM cap-
tures participants’ selections better than the features model. In
Figure 9A, the CSM assigns a high probability to the blocks
above the black block falling, and a low probability to most of
the other blocks. The reason why some of the blocks on the left
side sometimes fall according to the CSM is because the interven-
tion noise can lead the blocks above the black block to topple
toward the left and knock against that structure of blocks. The fea-
tures model overestimates the probability that blocks would fall
that participants do not select (the ones on the left in this trial),
and underestimates the probability for the ones that participants
do select (the ones on the right).

Figure 9B shows an example where the block tower configuration is
the same as in Figure 9A, but the position of the black block is different.
Naturally, the position of the black block makes a big difference to par-
ticipants’ selections, and the CSM correctly captures this. However, the
features model’s predictions about which blocks would fall are similar in
Panels A and B of Figure 9. This is because even though the black block
features are changed between these scenes, the global features and the
features of the red blocks are identical (see Table 2). Note that even
though according to the ground truth, the block to the left undereath
the black block would fall off the table, the CSM predicts that it
would not. This is because the CSM sets all of the objects to sleep
after having applied perceptual noise. And because there are no blocks

above the black block that would be affected by intervention noise,
none of the blocks are woken up and thus stay where they are.

In Figure 9C, the features model performs better than the CSM.
Participants were quite uncertain about which blocks would fall in
this scene. While the features model matches participants’ selections
closely here, the CSM assigns a high probability to the blocks that
would actually fall according to ground truth. Figure 9D shows an
example in which both models perform well. Here, there are two
piles of blocks disconnected from one another. Even though according
to ground truth, none of the blocks would fall, both models capture par-
ticipants’ intuitions that some of the blocks on the left would likely fall.
Figure 9E shows an example in which both the CSM and the features
model perform poorly. Both models fail to match participants’ high
degree of certainty that the blocks above the black one would fall.
Furthermore, both models assign a relatively high likelihood that the
blocks on the right would fall, while participants do not think so.

Panels A and D of Figure 10 show how well the CSM and the fea-
tures model capture participants’ selections across all of the trials. Like
in Experiment 1, the CSM captures participants’ selections better than
the features model. The features model again tends to predict that blocks
would fall for which people are certain that they would not (as indicated
by the many black points along the x-axis in Figure 10D). Both models
tend to underestimate larger selection probabilities (the regression line is
below the diagonal in Panels A and D of Figure 10). Compared to
ground truth, participants’ selections were 83% accurate (68% for
blocks that would fall, and 86% for blocks that would not fall). The
CSM’s accuracy was 81% (63% would fall, 85% would not fall),
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Figure 8
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Note. Example stimuli. we created six different tower configurations (four shown), each of which was repeated seven times for different positions of the black
block (three shown for each configuration). Bright red outlines indicate which blocks would fall off the table if the black block were not there. Outlines were not
visible to participants in the experiment. See the online article for the color version of this figure.

and the features model’s accuracy was 76% (49% would fall, 81%
would not fall).

Prediction Condition

Panels B and D of Figure 10 show the relationship between model
predictions and participants’ predictions about how many of the red
blocks would fall if the black block were not there. The CSM does a
better job of capturing participants’ predictions than the features
model. Figure 11A shows the relationship between the average pro-
portion of blocks that participants selected in the selection condition
and the proportion of blocks predicted to fall. Again, there was a very
tight relationship between the number of blocks that were selected
and predicted to fall, with predictions being higher than selections
(the regression line is above the diagonal).

Responsibility Condition

Panels C and F of Figure 10 show how well the CSM and the fea-
tures model account for participants’ responsibility judgments. The
CSM does a better job of capturing participants’ responsibility judg-
ments than the features model. Table 4 shows the correlations between
different features and participants’ responsibility judgments. As
expected, scene features did not correlate well with participants’
responsibility judgments because these features are insensitive to
the black block’s position. This time, a good predictor of participants’
responsibility judgments was the y-position of the black block. The
lower the black block was located in the scene, the more responsible
it was judged to be for the stability of the other blocks.

Figure 11B shows the relationship between participants’ predic-
tions and responsibility judgments. The responsibility judgments
from one group of participants were well accounted for by the pro-
portion of blocks that another group of participants predicted

would fall if the black block were not there. The greater the propor-
tion of blocks that were predicted to fall, the more responsible the
black block was judged to be.

Discussion

The results of Experiment 2 replicate and extend what we found in
Experiment 1. Again, participants’ predictions about what would hap-
pen if the black block were not there were highly correlated with judg-
ments about how responsible that block was for the others staying on
the table. We constructed the stimuli in Experiment 2 differently from
how we did in Experiment 1. This time, we included sets of towers and
manipulated within each set where the black block was positioned,
while keeping everything else constant (see Figure 8). Participants’
judgments in Experiment 1 were highly correlated with the average
y-position of the blocks in the scene. In Experiment 2, the new way
of designing the stimuli made it such that the average y-position of
the red blocks was no longer a good cue because it does not take
into account where the black block is positioned.

The scenes in Experiment 2 were also different in that they fea-
tured block towers with disconnected sets of blocks. These scenes
help tease apart to what extent people’s judgments are sensitive to
global scene features versus the more local consequences that
removing the black block would have. Overall, the CSM provided
a good account of participants’ judgments and outperformed the fea-
tures model in each of the three conditions. To gain additional
insights into the role that mental simulations and features play in
people’s judgments, we computed a regression that combined the
features model with the CSM. We applied this combined model to
participants’ selections and found that in Experiment 2, all of the
features that were significant predictors of participants’ selections
become non-significant once the predictions of the CSM are
added to the model (see Table A2). In this model, only the CSM
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Figure 9

Experiment 2: Model Predictions and Participants’ Judgments for a Selection of Stimuli

CSM

features model

prediction: 3.5 blocks
responsibility: 60

prediction: 0.8 blocks
responsibility: 13

people

Note.

prediction: 5.2 blocks
responsibility: 64

prediction: 3.3 blocks
responsibility: 43

prediction: 5.2 blocks
responsibility: 67

86

91§74

The number on each block indicates the percentage of participants who thought that this block would fall if the black block was not there, and the

predicted percentages for the models. The color fill gradient of the blocks maps onto O (red) and 100 (white). A bright red outline indicates that a block
would fall off the table according to ground truth. The outlines were not displayed in the experiment. See the online article for the color version of this figure.

is a significant predictor of participants’ selections while none of the
features are significant.

Even though the CSM did a good job capturing participants’ judg-
ments overall, there were some cases that reveal limitations of how
the model incorporates people’s uncertainty about what would happen
if the black block was removed. For example, in Figure 9A, people are
extremely certain that the blocks on the left side of the scene would not
fall. However, the CSM predicts that some of these blocks could fall.
This happens because of the way in which intervention noise is applied
to the block that is removed—sometimes this noise is strong enough
that the block above the black block bumps against the other blocks
on the tower and thereby causes them to fall off. In Figure 9B, the
CSM captures participants’ selections accurately. However, there are
situations in which the model’s predictions are likely to be wrong as
it is plausible that people sometimes do in fact believe that objects
underneath an object would fall if it were removed. We will return to
some challenging test cases like these in the “General Discussion”
section.

Experiment 3: Judging Pairs of Blocks

The results of Experiments 1 and 2 showed that the CSM accu-
rately captures participants’ judgments about how responsible
one block was for the tower’s overall stability. The CSM also nat-
urally makes predictions about the relationship between pairs of
individual blocks, by querying what would happen to just one
block if another were removed. The features model, in contrast,
needs to be reconfigured for this novel task. In Experiment 3,
we asked participants to judge how responsible one block was
for another block’s staying on the table. Figure 12 shows a selec-
tion of trials: each scene contained one black block, one white
block, and a varying number of red blocks. In the prediction con-
dition, participants were asked to judge how likely the white
block would be to fall off the table if the black block were not
there. In the responsibility condition, participants judged to
what extent the black block was responsible for the white block
staying on the table.



This document is copyrighted by the American Psychological Association or one of its allied publishers.

personal use of the individual user and is not to be disseminated broadly.

This article is intended solely for the

18 ZHOU, SMITH, TENENBAUM, AND GERSTENBERG

Figure 10

Experiment 2: Scatterplots Showing the Relationship Between the Counterfactual Simulation Model (CSM) and Participants’ Judgments at
the Top, and the Relationship between the Features Model and Participants’ Judgments at the Bottom
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point in the remaining panels represents one trial (42 trials in total). The blue line in each plot indicates the best-fitting regression line, and the blue ribbon
shows the 95% confidence interval of the regression line. The error bars on the data points indicate 95% bootstrapped confidence intervals. See the online

article for the color version of this figure.

This new task is similar to the way in which Gerstenberg,
Goodman, et al. (2021) probed causal judgments (see also
Gerstenberg et al., 2017). In their studies, participants were asked
whether ball A caused ball B to go through a gate, or prevented it
from going through. In our case here, the question is whether the
black block prevents the white block from falling off the table.
Gerstenberg, Goodman, et al. (2021) asked one group of participants
to make counterfactual judgments (e.g., “Would ball B have missed
the gate if ball A had been removed?”) and another group to make
causal judgments (e.g., “Did ball A cause ball B to go through the
gate?”). The results showed a very close quantitative correspondence
between the counterfactual judgments of one group and the causal
judgments of another. The more certain participants were that the
counterfactual outcome would have been qualitatively different
from what actually happened, the more they judged that the candi-
date caused the outcome. Correspondingly, in our task, we expect
that there will be a close mapping between the counterfactual predic-
tions and responsibility judgments. The more certain participants are
that the white block would fall if the black block were not there, the
more responsible the black block should be judged for the white
block’s staying on the table.

Method
Participants

Eighty-one participants (Myge =37, SD,g =12, 49 men, 32
women) were recruited via Amazon Mechanical Turk with N =41
in the prediction condition and N =40 in the responsibility condi-
tion. We used an exclusion trial in which the removal of the black
block clearly had no effect on the white block, similar to the trial
in Figure 4G. Three participants were excluded in the prediction con-
dition (leaving N = 38), and three participants were excluded in the
responsibility condition (leaving N = 37).

Design and Procedure

The experiment instructions were largely identical to those of
Experiments 1 and 2. Because we only asked participants about
two particular blocks in each scene, this experiment did not include
a selection condition. In the prediction condition, participants were
asked “Would the white brick fall off the table if the black brick
wasn’t there?” Participants provided their answers on a sliding scale
ranging from definitely not (0) to definitely yes (100). In the
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Experiment 2: Comparison Between Participants’ Responses in the Three Conditions
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(A) The proportion of blocks participants selected in the selection condition was compared with the propor-

tion of blocks they judged to fall in the prediction condition. We used the proportion because different stimuli con-
sisted of different numbers of blocks. (B) The proportion of blocks predicted to fall in the prediction condition was
then compared with participants’ judgments in the responsibility condition. Error bars indicate bootstrapped 95%
confidence intervals. The blue ribbon shows the 95% confidence interval of the regression line. See the online article

for the color version of this figure.

responsibility condition, participants were asked “To what extent is
the black brick responsible for the white brick staying on the
table?” The sliding scale ranged from not at all (0) to very much (100).

Participants saw 42 separate scenes which had been generated in
the same way as in Experiment 1 (see Figure 12 for a selection of
scenes). We selected scenes such that the CSM’s predictions of
whether the white block would fall varied across the whole range
from being certain that it would not fall to being certain that it
would. The number of blocks on the table ranged between 12 and
19. The number of blocks that would fall if the black block were
removed according to the ground truth varied from O to 9. On aver-
age, participants took 7.03 (SD = 5.04) min in the prediction condi-
tion and 6.73 (SD = 7.99) min in the responsibility condition.

Results

Figure 12 shows participants’ responses and model predictions for a
subset of the trials. The number on the white block shows participants’
average prediction judgments. The higher the number the more likely
participants believed on average that this block would fall off the table
if the black block were removed. The text at the top of each figure
shows the predictions of the CSM and the features model, as well as
participants’ responsibility judgments. We will discuss the results of
the prediction condition and the responsibility condition in turn, first
focusing on some concrete cases, and then zooming out.

Prediction Condition

Panels A and B of Figure 12 show two cases in which the predic-
tions of the CSM match participants’ judgments better than those of
the features model. The features model assigns a low probability
because in general, the white block is less likely to fall when its vertical

position is low, or when the black block’s position is high. In Panels C
and D of Figure 12, the features model matches participants’ judg-
ments more closely than the CSM. In Figure 12D, the CSM assigns
a probability of 0% that the white block would fall. Here, there are
not any red blocks above the black block that could be affected by
the intervention noise. This means that only perceptual noise is applied
but because the objects are put to sleep after that happens, and no col-
lisions take place to wake the objects back up, none of the blocks fall
off the table (similar to CSM’s judgments in Figure 9B). Panels E and
F of Figure 12 show situations in which both models capture partici-
pants’ judgments well, and Panels G and H of Figure 12 show situa-
tions in which neither model performs well. In Figure 12G, the
white block is directly under the black block, and both models under-
estimate people’s judgments in this case. In Figure 12H, both models
capture participants’ predictions well, but there is a mismatch between
prediction and responsibility judgments.

Panels A and C of Figure 13 compare the predictions of the CSM
and features model with participants’ judgments across all 42 trials.
The CSM does a better job than the features model at capturing par-
ticipants’ predictions. Notice that participants’ judgments are less
extreme than what the models predict (as indicated by the regression
line being off the diagonal). To get a sense of how accurate partici-
pants and the model were, we computed the average probability with
which participants (or the models) said that a block would fall when
it did and that it would not fall when it did not. Participants’ predic-
tion responses were 61% accurate. The CSM and features model
were 63% and 62% accurate, respectively.

Responsibility Condition

Panels B and D of Figure 13 show how well the CSM and features
model capture participants’ responsibility judgments. Again, the
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Figure 12

Experiment 3: Example Stimuli with Participants’ Judgments and Model Predictions

CSM: 80%
features model: 45%
responsibility: 56

a) CSM: 50% b)
features model: 26%
responsibility: 48

CSM: 0%
features model: 20%
responsibility: 11

c) CSM: 9% d)
features model: 35%
responsibility: 35

CSM: 56%
features model: 74%
responsibility: 35

e) CSM: 77% f)
features model: 80%
responsibility: 80

CSM: 50%
features model: 47%
responsibility: 18

g) CSM: 46% h)
features model: 25%
responsibility: 55

Note.

In the prediction condition, participants judged how likely the white block would be to fall if the black block were not there. In the responsibility

condition, participants judged how responsible the black block was for the white block staying on the table. The number on the white block indicates partic-
ipants’ mean prediction judgment for this scene. The text at the top of each trial shows the counterfactual simulation model (CSM) and the features model
prediction of how likely the white black would fall, as well as participants’ mean responsibility judgment. The black and red outlines indicate whether
each block would stay or fall off the table if the black block were not there; outlines were not present in the experiment. See the online article for the

color version of this figure.

CSM does a better job than the features model. Both models, how-
ever, fail to capture some of the variance in participants’ responses.
Table 4 shows which features best correlated with participants’
responsibility judgments. This time, the best predictor is the
y-position of the white block. The higher that block was positioned,
the more responsibility participants tended to assign to the black
block.

Figure 14 shows the relationship between participants’
judgments in the prediction condition and in the responsibility
condition. The results show that there is a very close relationship
between participants’ predictions about whether the white
block would fall if the black block were not there and the extent
to which the black block was judged to be responsible for the
white block staying on the table. The more likely participants
judged that the white block would fall if the black block
were not there, the more responsible the black block was judged
to be.

Discussion

While Experiments 1 and 2 investigated how people judge the
extent to which a candidate object is responsible for the overall
stability of the tower, Experiment 3 focused on the relationship
between individual blocks. We asked one group of participants to
predict whether a target block (the white block) would fall if the
black block were not there, and another group of participants how
responsible the black block was for the white block staying on the
table. We found that participants’ counterfactual predictions and
responsibility judgments were very closely related (r=.93). The
more likely participants thought that the white block would fall,
the more responsible the black block was judged to be.

There were a few cases in which prediction and responsibility
judgments differed. For example, in the trial shown in Figure 12H,
participants predicted that the white block would be 53% likely to
fall off the table, but assigned relatively little responsibility (18) to
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Figure 13

Experiment 3: Scatterplots Showing the Performance of the Counterfactual Simulation Model
(CSM) and the Features Model on Both Conditions
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In the prediction condition (A and C), participants were asked how likely the white block was to fall if

the black block was not there. In the responsibility condition (B and D), participants were asked how responsible
the black block was for the white block staying on the table. Red letters indicate the trials from Figure 12. Error
bars indicate bootstrapped 95% confidence intervals. The blue ribbon shows the 95% confidence interval of the
regression line. See the online article for the color version of this figure.

the black block. One possibility for why the two types of judgments
may have come apart here is that when people judge responsibility
they not only care about the chance that the other block would fall
but also about the causal chain of events by which the outcome
would come about. So when several other blocks are part of the
chain of events that lead from the removal of the black block to
the white block falling off the table, there is a certain degree of dif-
fusion of responsibility (see for how the causal structure affects the
diffusion of responsibility between agents Chockler & Halpern,
2004; Gerstenberg & Lagnado, 2010; Lagnado et al., 2013;
Langenhoff et al., 2021; Zultan et al., 2012).

In Experiments 1 and 2, the responsibility question was some-
what ambiguous. We had asked participants to what extent the
black block was responsible for the red blocks staying on the
table. We found that participants’ responsibility judgments corre-
lated highly with the proportion of blocks that would have fallen
off the table. It is however possible that some participants inter-
preted the question differently and, for example, cared about the
absolute number instead. In Experiment 3, participants had to

judge how responsible one block was for another one, thereby
removing this ambiguity.

Experiment 3 also connects more closely with prior work on
causal judgment (see Gerstenberg, Goodman, et al., 2021). In
work on causal judgment, researchers usually ask to what extent
some candidate event (or object) caused a particular event to happen.
For example, the question might be whether billiard ball A caused
billiard ball B to go through a gate. In this case, participants consider
what would have happened if ball A had not been present in the
scene (Gerstenberg et al., 2017). The more certain they are that the
outcome would have been different in that case, the more they
judge that ball A caused the outcome. In a similar way, we asked
here whether one candidate, the black block, is responsible for the
white block staying on the table. The results show that participants’
responsibility judgments are consistent with the idea that they are
mentally simulating what would happen if the black block were
not there.

The CSM again provided a good account of participants’ predic-
tions and responsibility judgments (see Figure 13). This further
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Figure 14

Experiment 3: Relationship Between Participants’ Predictions of
How Likely the White Block Would be to Fall if the Black Block
Was Removed (x-axis) and the Extent to Which the Black Block
Was Judged to be Responsible for the White Block Staying on
the Table (y-axis)

100] r=0.93
_ | RMSE =10.02 %
G 80 iy
£ I

o
S o
.3, 607 oo .,0"
> o8- —*
£ Y
= 3 2
o) Ve
= 40 ,®
8_ ., L
g 201 .r',C 'y
S “® ®
/.l ..
..
01,

0 20 40 60 80 100
prediction judgment (%)

Note. Each point shows the averaged judgments for one trial, and the
error bars are 95% bootstrapped confidence intervals. See the online article
for the color version of this figure.

supports the idea that judging responsibility for stability and consid-
ering counterfactual simulations are intimately related. The features
model which predicts participants’ judgments without relying on
physical simulations did not fare as well. In Experiment 1, scene fea-
tures, such as the average distance of each block from the edge, were
a good predictor of participants’ responsibility judgments. In
Experiment 2, features associated with the black block, such as
how many red blocks are above it, were a good predictor. This
time, in Experiment 3, it was features associated with the white
block that correlated highly with participants’ responsibility judg-
ments. So while there are features in each experiment that are asso-
ciated with participants’ judgments, how much each feature matters
changes between experiments. In contrast, the CSM provides a uni-
fied account of participants’ judgments across all experiments.
While the CSM captures much of the variance in participants’
responsibility judgments in Experiment 3, it did so slightly less
well than in Experiments 1 and 2. This may seem somewhat surpris-
ing given that Experiment 3 was most closely modeled after the sit-
uations in which the CSM was originally developed, namely where
the question is to what extent a single candidate cause was responsi-
ble for an event of interest. Note, however, that in Experiments 1 and
2, there is some room for the model to get things right for the wrong
reasons, and that is not possible in Experiment 3. In Experiments 1
and 2, the CSM uses the proportion of blocks predicted to fall to
determine responsibility. It is possible that it sometimes gets the pro-
portion right but actually predicts that different blocks would fall

than the ones that people think would fall. In Experiment 3, rather
than predicting the proportion of blocks that would fall, the CSM
has to predict the probability with which a single block would fall,
and there is less room to get that right for the wrong reasons.

Most importantly, while there is still some room for improving
how the CSM captures participants’ simulations of what would hap-
pen, there was a very close relationship between participants’ predic-
tions and responsibility judgments (see Figure 14). And this really is
the main claim of the CSM: people judge responsibility by consid-
ering what would have happened in a relevant counterfactual
situation.

Model Comparison

The full CSM includes three sources of uncertainty that affect peo-
ple’s predictions about what would happen. To assess whether all
three of these components are required to accurately account for peo-
ple’s judgments, we compared the full model with simpler models
that only consider one or two sources of uncertainty. For example,
one such model “turns off” intervention uncertainty by setting the
intervention noise parameter f; to 0. There are six such models
(three models with two sources of noise, and three models with
one source of noise).

To evaluate how well the different versions of the CSM and the
features model account for participants’ responses, we performed
split-half cross-validation on the combined data from all three exper-
iments. We evaluated the models’ performance on the selection data
from Experiments 1 and 2 and the prediction data from Experiment
3. Table 5 shows the results of this analysis.

The full CSM outperforms all of the lesioned models: it correlates
more strongly with participants’ responses and has a lower error in
the held-out test sets. In a sensitivity analysis in the Appendix (see
Figure A1), we show how the CSM’s performance depends on the
parameter values. The loss landscape is smooth in that small changes
to the parameters do not lead to big changes in the model fits (as
desired). The cross-validation results also give a sense of how
much the different sources of uncertainty affect the model’s perfor-
mance. For example, models that do not include intervention noise
generally fare worse than those that do not include perceptual
noise. The full CSM outperforms the features model. The features
model achieves a high correlation with participants’ judgments
when fitted separately to the different experiments (see Table 3).
However, there is no single parameter setting that works well across
all three of the experiments. Which features matter most differs
between the experiments.

Responsibility Judgments

We performed separate cross-validations to evaluate whether the
CSM also outperforms the features model in capturing participants’
responsibility judgments. For this analysis, we compared the full
CSM with the features model. Because the responsibility question
differed between some of the experiments, we ran two separate
cross-validation analyses: one that combined the data from
Experiments 1 and 2, and one for Experiment 3.

For the cross-validation on Experiments 1 and 2, we determined
the best-fitting version of the CSM on each training set by first cal-
culating the proportion of blocks it predicted to fall on each trial in
the training set for each parameter setting of the CSM (defining a
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Model Comparison Results on Aggregated Data From the Selection Condition of Experiments 1 and 2 and the Prediction Condition of

Experiment 3

Split-half cross-validation

Model Best-fit r Ar RMSE ARMSE AIC BIC
CSM (p, i,d) 2,5,4 .86 [.84, .87] — 2.53[2.25,2.83] — 938 953
CSM (p, i) 2,5 .84 [.83, .86] .01 [.00, .02] 2.72 [2.44, 3.06] 0.19 [0.01, 0.43] 949 959
CSM (p, d) 4,3 76 [.73, .79] 10 [.07, .12] 4.35 [4.03, 4.69] 1.82[1.41,2.19] 1,105 1,115
CSM (i, d) 55 .85 [.83, .86] .01 [.00, .02] 2.77[2.45, 3.13] 0.24 [0.06, 0.43] 989 1,004
CSM (p) 5 T4 .72, .77] 11 .08, .13] 4.45[4.08, 4.81] 1.92 [1.50, 2.31] 1,094 1,099
CSM (i) 5 .84 [.82, .85] .02 [.01, .03] 2.90 [2.58, 3.27] 0.38 [0.17, 0.58] 1,003 1,008
CSM (d) 9 .68 [.65, .71] 17 [.14, .20] 6.79 [6.21, 7.40] 4.27 [3.67, 4.88] 1,543 1,548
Features — 12 [.79, .74] 14 [.11, .17] 4.37[3.97, 4.83] 1.84 [1.31, 2.32] 1,036 1,101

Note. The model column specifies the model version. The best-fit column shows the best-fitting parameter values for each model (when the model is fitted on all
of the data). An interactive widget for visualizing different versions of the counterfactual simulation model (CSM) is available at https:/cicl-stanford.github.io/
mental_jenga/interface. The cross-validation results show the median and the 5% and 95% quantiles for each test set across the 200 cross-validation runs. The
column shows the correlation between model predictions and participants’ responses. The Ar column shows the difference in » between the full CSM and the
other models. The RMSE column shows the root mean squared error between model prediction and participants’ responses. The ARMSE column shows the
difference in RMSE between the full CSM and other models. The AIC and BIC columns show the Akaike Information Criterion and the Bayesian
Information Criterion for each model when fitted on all of the data. For these two measures, lower values indicate better model performance. p = perceptual

noise, i = intervention noise, d = dynamic noise.

grid over the noise parameters B, B;, and B,;). We then computed a
linear regression, mapping from the proportion of blocks predicted
to fall to participants’ responsibility judgments. This procedure fits
five parameters in total: the three noise parameters in the CSM,
and the intercept and slope in the linear regression. We find the
five parameters that minimize the squared loss between model pre-
dictions and responsibility judgments on the training set, and then,
using these parameters, compute the squared loss on the held-out
test set. For the features model, we fit a linear regression using
nine parameters on the training set (four scene features, four black
block features, and one intercept; see Table 2) and then compute
the loss on the test set. We repeat this procedure 200 times using
split-half cross-validation. Table 6 shows the results of this analysis.
The CSM captures participants’ responsibility judgments better than
the features model as indicated by positive values of Arand ARMSE.

We performed a separate cross-validation for Experiment 3. In
this experiment, the CSM predicts that the black block’s responsibil-
ity is a direct function of how likely the white block would fall. So
for this experiment, the CSM only has its three noise parameters, and
no mapping via a linear regression is required. The features model
has 12 parameters in this experiment because it also encodes infor-
mation about the white block (see Table 2). As Table 6 shows, the
CSM captures participants’ responsibility judgments better than
the features model.

Error Analysis of Prediction Judgments

As an additional test for how well the CSM and the features model
capture participants’ judgments, we can compare the errors that people
make with those of the models. For this analysis, we focused on the
prediction conditions in Experiments 1 and 2. We computed the
model error by subtracting the model predictions from the ground
truth. For example, if, according to ground truth, five red blocks
would fall if the black block were removed, but a model predicts
that only three blocks would fall, this would be a prediction error of
— 2. Figure 15 shows scatter plots between the prediction errors
from models and people. The prediction errors between models and

people are strongly correlated in both experiments. In both experi-
ments, the prediction errors between CSM and people are more
strongly correlated with one another than the errors between the fea-
tures model and people. However, in Experiment 1, the features model
is less biased (lower RMSE) than the CSM. As we already saw in
Panels B and E of Figure 6, the CSM underestimates more strongly
than the features model how many blocks people think would fall.

Individual Participant Analysis

We used the CSM to model participants’ aggregated judgments.
For example, in the selection conditions of Experiments 1 and 2,
the model predicts the probability that a particular block would be
selected by participants. For any given noise parameter setting, the
model approximates this “true” probability by running a large num-
ber of simulations. We chose 200 simulations for practical reasons.
A larger number of simulations would simply result in a better esti-
mate of that probability. Of course, we do not assume that this is a
model of how individual participants select which blocks would
fall. It is much more plausible that participants only run a very
small number of simulations. Gerstenberg et al. (2017) used eye-
tracking to quantify how many counterfactual simulations partici-
pants produced when assessing whether ball A caused ball B to
go through a gate. Generally, the number was small (no more than
3), and greater in situations in which the counterfactual outcome
was more uncertain (see also Hamrick et al., 2015).

How many simulations did participants run in our experiments?
While we cannot know for sure, we can at least approximate an
answer. To do so, we used a procedure that Battaglia et al.
(2013) developed: we simulated artificial participants from our
model and varied how many simulations (V) each individual par-
ticipant generated before making a judgment. For example, if a

5 This kind of analysis would not be very informative for Experiment 3 as
the ground truth is just 1 or 0 depending on whether the white block falls, and
so there is no way for a model to make an error in both directions from the
ground truth.
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Table 6

Model Comparison Results for the Full CSM and Features Model When Fit Directly to the Responsibility Condition

Experiments Model r Ar RMSE ARMSE

1and 2 CSM .87 [.83,91] — 9.37 [8.02, 10.57] —
features 78 [.67,.85] .08 [.00,.16] 11.52 [9.50, 13.55] 2.15[—0.26, 4.81]

3 CSM .85[.78,.90] 18.12 [13.72, 21.61] —

features .59 [.36,.77] .19 [.01,.41] 25.02 [18.79, 35.46]

6.90 [— 1.15, 16.76]

Note. The cross-validation results show the median and the 5% and 95% quantiles for each test set across 200 cross-validation runs. The r column shows the
correlation between model predictions and participants’ responses. The Ar column shows the difference in r between the CSM and the features model. The
RMSE column shows the root mean squared error between model prediction and participants’ responses. The ARMSE column shows the difference in
RMSE between the CSM and the features model.

participant ran two simulations in the selection condition, any
given brick would either fall zero, one, or two times. The partici-
pant then chooses to select blocks based on these simulations
(here basically flipping a coin for the blocks that fell once). We

can then compare the aggregated responses from these simulated see Figure A2).

Figure 15

Error Analysis: Relationship Between Participants’ Errors in the Prediction Condition, and Both
Counterfactual Simulation Model (CSM) and Features Model Errors When Fit to Selection
Condition Data, for Experiments 1 and 2
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Note. Each point shows the averaged judgments for one trial, and the error bars are 95% bootstrapped confi-
dence intervals. See the online article for the color version of this figure.

participants who run N simulations before making a judgment to
those of our actual participants. Based on this analysis, we found
that our results are most consistent with individual participants run-
ning a single simulation to make their judgment (Vul et al., 2014;
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General Discussion

How do people judge whether one object is responsible for the
stability of another? In this paper, we developed the CSM of causal
judgments about physical support. The CSM predicts that people
judge physical support by mentally simulating what would happen
if the object of interest were removed. We tested the CSM across
three experiments in which participants made judgments about towers
of blocks stacked on a table. Similar to how people spontaneously
consider counterfactuals when judging causation for dynamic physi-
cal events (Gerstenberg et al., 2017), the CSM assumes that people
play “Jenga in their mind” when judging responsibility in static scenes
involving physical support. The more certain people are that the object
(s) of interest would have fallen if a target object had been removed,
the more responsible that target object is for its stability.

In Experiments 1 and 2, the CSM accurately captured partici-
pants’ selections of which other blocks would fall off the table if
the black block were not there, their predictions of how many of
the blocks would fall, as well as their judgments of how responsible
the black block was for the other blocks staying on the table. In
Experiment 3, the CSM captured participants’ graded beliefs
about whether one particular block of interest would fall off the
table if the black block were not there. All three experiments showed
how the counterfactual predictions of one group of participants
closely matched the responsibility judgments of another group.

We contrasted the CSM with a features model that predicts partic-
ipants’ judgments via a direct mapping from visual features. For
example, the features model predicts that more blocks will fall
when the tower is taller. The features model was not able to capture
participants’ selections, predictions, and responsibility judgments as
well as the CSM did. Which individual features best correlated with
participants’ judgments varied across the different experiments. In
contrast, the CSM provides a unified account of participants’ judg-
ments across a wide variety of situations and tasks.

A Unified Account of Causal Judgments Across Different
Types of Causation

The CSM explains people’s causal judgments as arising from a
comparison between the actual situation and a counterfactual situa-
tion in which the candidate’s cause was imagined to have been dif-
ferent. The CSM has been shown to provide an accurate model of
how people make causal judgments about physical events (Beller
et al., 2020; Gerstenberg, in press; Gerstenberg, Goodman, et al.,
2021; Gerstenberg et al., 2017). In this standard kind of “event cau-
sation,” one candidate cause event brings about an effect event of
interest, such as when the rock hitting a window causes the window
to shatter. Most philosophical theories of causality take the causal
relata to be events (Paul & Hall, 2013; Schaffer, 2016).

Treating events as the units of a causal relationship, however, makes
it difficult to handle omissions as causes. When our plants die while
we were away because our neighbor forgot to water them (even though
they had promised to do so), there is no event that we could attribute
the outcome to McGrath (2005), Henne et al. (2017), Beebee (2004),
and Livengood and Machery (2007). Gerstenberg and Stephan (2021)
have shown that the CSM naturally handles “omissive causation.” The
CSM simulates what would have happened if the event of interest had
taken place, and then compares that counterfactual outcome to what
actually happened. For example, when asked whether ball B went

through the gate because ball A did not hit it, the CSM simulates
what would have happened if the collision had taken place, and
how likely the outcome would then have been different.

In omissive causation, there is no cause event. In the case of phys-
ical support, there are not any events at all. Nothing changes in a stable
block tower, it just sits there. Again, the CSM naturally extends to this
type of causation that we may call “sustaining causation” (see Ross &
Woodward, 2021 for relevant work in philosophy). A sustaining
cause brings about an effect due to its continuing presence. In our
case, an individual block in a tower is a sustaining cause of the tower’s
stability. Sustaining causation reveals itself by the counterfactual sim-
ulation of what would have happened if the sustaining cause had been
removed. In other words, a block sustains the tower’s stability because
the tower would collapse if the block were removed.

The CSM provides a principled and general framework for under-
standing people’s causal judgments across a variety of types of
causal relationships that include “event causation” (Gerstenberg,
Goodman, et al., 2021), “causation by omission” (Gerstenberg &
Stephan, 2021), and “sustaining causation” (see Table 1).
Psychological theories that rely on events to explain causal judg-
ments have trouble with causation by omission and do not apply
to instances of sustaining causation such as physical support (e.g.,
Wolff, 2007; Wolff et al., 2010). The CSM assumes that people
build a mental model of the world and that different kinds of causal
judgments can all be understood as counterfactual operations on this
mental model. More work is required to better understand the cogni-
tive processes that underlie causal judgments according to the CSM.
In the remainder of the discussion, we will highlight some limita-
tions of the CSM as it applies to capturing judgments of physical
support, and suggest directions for future research.

The Role of Mental Simulation in Assessing Physical
Support

The CSM assumes that people judge an object to be the cause of
stability by mentally simulating what would happen if that object
were not there. To do so, the CSM employs a physics engine for repre-
senting the scene and for simulating what would happen (Smith et al., in
press; Ullman et al., 2017). To capture the gradedness in participants’
judgments, the CSM incorporates different sources of uncertainty
including perceptual uncertainty about the position of the blocks, inter-
vention uncertainty about the removal of the block, and dynamic uncer-
tainty about how the scene would unfold. With these sources of
uncertainty, the CSM accurately captures participants’ judgments.

The fact that these sources of uncertainty are sufficient for captur-
ing participants’ judgments does of course not mean that they are
necessary. It is very plausible that there are other aspects of the
scene that participants are uncertain about, and that alternative
noise models would also accurately capture participants’ judgments.
For example, participants may be unsure about the degree of friction
between the blocks, or the coefficient of restitution which deter-
mines how elastic the collisions are. It is also possible that partici-
pants consider a different counterfactual intervention from the one
that the CSM implements when evaluating the extent to which the
black block is responsible. For example, instead of imagining
what would happen if the block were not there, they might imagine
what would happen if the block were perturbed (without removing
it). Although the CSM captures participants’ judgments well, we
do not claim that people are running counterfactual simulations in
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exactly that way. We do believe, however, that mental simulation, in
some form, is critical for understanding physical support. The fact
that the features model failed to capture participants’ judgments as
well as the CSM did lends some support for this claim.

The counterfactual simulations that are required to assess what
would happen to the towers if the black block were removed are fairly
complex. We are not arguing that mental simulation must act on a per-
fectly faithful representation of the world—there are clear limitations
to what aspects of a scene people can represent and simulate. Ludwin-
Peery et al. (2021) argue that people display errors in physical judg-
ments that are at odds with simulation over a full representation of
complex scenes. For instance, they show that when people choose
one of four possible end states of a falling tower, they will often
choose scenes in which one block has been removed or added. If peo-
ple were representing each block individually, as a physics engine
does, then such errors should have been unlikely. We believe that it
is plausible that people construct a simplified mental representation
of the scene, and that they then run mental simulations over that rep-
resentation. Future work is required to better understand how people
combine what they know about the physical world with what they
see in a particular situation, to build a mental representation of the
scene that is tailored to the task at hand (Ullman et al., 2017).

A related question is whether physical support needs to be inferred
(via mental simulation), or whether it can be directly perceived (Little
& Firestone, 2021). There is rich literature on the perception of causal-
ity. Simple events, such as the classic Michottean launching event
(Michotte, 1946/1963), look causal to us and it does not feel like
we are engaging in mental simulation when judging that the first
ball caused the second ball to move. What role physical knowledge
plays in such simple situations is disputed (Bechlivanidis et al.,
2019; Kominsky et al., 2017). Judgments about more complex
cases, however, feel more inferential. For example, when judging
whether one ball caused another ball to go into a hole, people sponta-
neously simulate what would have happened in the relevant counter-
factual situation (Gerstenberg et al., 2017).

Where does physical support stand? Sometimes, it feels like we can
directly see support relations. We see that the legs support the tabletop
and that the pillars support the roof. In more complex cases like the
ones that we consider in this paper, it feels more like we have to
engage our inferential abilities to make judgments about support
(see Pramod et al., 2021 for evidence of abstract representations of
physical stability in the brain). It is plausible that in our experiments,
participants relied on a combination of more general visual features
and mental simulation. Smith et al. (2013) have shown that partici-
pants’ predictions about whether a moving ball will first hit a red or
green patch in a maze are generally well-accounted for by a noisy sim-
ulation model. However, there were also some trials in which partic-
ipants responded more rapidly than the model did. For example,
participants realized that when the red patch was outside of an area
that physically contained the ball and the green patch, the ball had
to eventually hit the green patch (and it was impossible to hit the
red patch). So, participants seemed to draw both on more general topo-
logical information (such as containment) to make rapid inferences
about what was possible, as well as on mental simulation to make pre-
dictions about what was probable (see also Smith et al., 2017). In a
similar way, people may have learned visual shortcuts that are reliable
predictors of stability in many situations.

While the current version of the CSM relies heavily on the process
of simulation, it also encodes more general heuristic principles in the

way in which it applies uncertainty. Specifically, it assumes that coun-
terfactual interventions initially only affect the objects that are above
the black block, and it uses a heuristic definition of what “above”
means. Furthermore, it uses the heuristic principle of putting objects
to sleep so as to only simulate those parts of the scene that would
be affected by the black block’s removal (Ullman et al., 2017).
Future work is required to delineate more clearly how visual features,
heuristic principles, and mental simulations jointly contribute to par-
ticipants’ physical predictions. In our experiments, participants had as
much time as they liked to respond. It would be interesting to explore
what participants’ judgments would look like under time pressure, or
if they are put under cognitive load with a secondary task. Itis possible
that in such settings, people would rely more heavily on general fea-
tures of the scene, and less so on the process of mental simulation.

A simulation model is a powerful tool. We focused here on how
simulations enable judgments of physical support. Simulations are
also critical for planning and decision-making (Allen et al., 2020;
Bapst et al.,, 2019; Baradel et al., 2019; Hamrick et al., 2018;
Yildirim et al., 2017). For example, when deciding which block to
pick in Jenga, a player needs to mentally simulate what would happen
next. A flexible simulation engine provides a unified framework for
modeling a great variety of different tasks. For example, participants
could be asked to add a block to make a tower more robust or to
remove a block to make the greatest number of blocks fall off the
table. We could also ask participants to choose a block to remove
such that exactly N other blocks would fall off the table, that a specific
set of blocks would fall off, or that one specific block would fall off
while another specific block would stay on, and so on.

Supporting Versus Preventing From Falling

In our experiments, we did not ask participants directly about
physical support. Instead, we asked them to judge how responsible
one block was for the other blocks staying on the table
(Experiments 1 and 2), or for one particular block (Experiment 3).
We conceptualized the notion of responsibility as preventing from
falling. A block is responsible to the extent that removing it from
the scene would result in the other blocks falling from the table.
While physical support and prevention from falling often go
together, they can also come apart.

Panels A and B of Figure 16 show two examples in which the
black block prevents the white block from falling off the table. In
both situations, the white block would fall off the table if the
black block were not there. However, while it feels right in
Figure 16A to say that the black block supports the white block, it
does not feel right to say so in Figure 16B. For the black block to
support the white block, it must be positioned underneath.

There is another sense in which supporting and preventing from
falling come apart. Intuitively, all that is required for object A to
support object B is that object B would move (ever so slightly) if
object A were removed. Accordingly, in many of our stimuli, the
black block supports many more objects than it prevents from fall-
ing off the table. The CSM could be adapted to test for physical
support in the following way: first, consider a counterfactual inter-
vention that removes the object of interest from the scene (with
some small perturbation), then check for every object (above the
removed one) whether its position changed from what it was before
the intervention. Determining physical support in this way would
arguably be less challenging than assessing whether a block



This document is copyrighted by the Ame

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

MENTAL JENGA 27

Figure 16
Scenes Illustrating Interesting Border Cases of Physical Support
a) b) c)

el s

Note. 1In (A) and (B), the black block is responsible for the white block
staying on the table. The white block would fall off the table if the black
block were not there. However, only in (A) but not in (B) does it seem
appropriate to say that the black block supports the white block, suggesting
that the notion of “physically supporting” is different from the notion of
“preventing from falling.” In (C) three black blocks are jointly responsible
for the white block not moving. However, even if block A had not been
there, the white block still would not have moved. Only if at least two of
the black blocks were removed, would the white block move.

prevented another from falling off the table. To assess support, one
only needs to simulate a few steps ahead, whereas for assessing pre-
vention from falling, one needs to run the simulation many more
steps. Battaglia et al. (2013) showed that participants have an easier
time judging whether or not a tower will fall (and in which direction
it will fall) than judging how far the blocks will fall. Whereas judg-
ing whether a block would fall (and in what direction) only requires
simulating a few steps forward, judging how far the blocks will fall
requires simulating many more steps.

The case shown in Figure 16B also highlights a potential limitation
of the way in which the CSM is implemented. Because of the way in
which uncertainty is implemented in the CSM, it actually would not
predict that the white block would fall. Remember that the model
applies perceptual noise first, puts the objects to sleep, adds interven-
tion noise by applying an impulse to the blocks above the black one,
and then uses dynamic noise to resolve the collisions that unfold. In
this case here, there are no blocks above the black block. What this
means is that while perceptual noise is applied to the white block, it
is put to sleep afterward and thus does not fall off the table (because
there are not any other objects whose collisions could wake it up).
Only objects that are awake move.

Some of these situations arose in our experiments. For example, in
the tower in Figure 9B of Experiment 2, the black block is at the very
top. According to the ground truth model, the left block underneath
it would fall off the table. However, 3 out of 43 participants believed
that this block would fall. Most participants thought that none of the
blocks would fall off. Similarly, in the tower in Figure 12D of
Experiment 3, only a few participants thought that the white block
on the bottom left would fall if the black block were removed. In
both of these cases, the CSM is certain that none of the blocks
would fall (and thus captures people’s judgments quite well).

Of course, one could consider alternative ways of implementing
sleep in the model. For example, sleep could be implemented in a
way such that not just the objects that are above the black block
are woken up, but all the objects that are in contact with it.
Implemented in this way, the CSM would predict that the blocks
in the two examples we discussed would fall. It would thus be closer
to ground truth, but further away from people’s intuitions. People’s
tendency to mostly consider what consequences the removal of an
object would have to the objects above, and less so to the objects
below, is a bias in physical reasoning worthy of further exploration.

Overdetermination

One of the examples of physical support from the Oxford
Dictionary that we mentioned earlier states that “the dome was sup-
ported by a hundred white columns.” It is plausible that the dome
would not collapse if one of the columns was removed. However,
we would still want to say that each of the columns supports the
dome. The CSM captures people’s responsibility judgments by con-
sidering what would happen if the target object were removed. The
black object is responsible for the white object if the white object
would fall without the black object. However, it is easy to conceive
of situations in which removing the black object would not make the
white object fall but where we nevertheless feel that the black object
carries some responsibility for the white object’s stability. Consider
the situation in Figure 16C. The three black blocks A, B, and C sup-
port the white block that rests on top of them. To what extent is each
block responsible for the white block’s stability (not considering
here whether it would fall off the table, but instead whether it
would fall at all)? Intuitively, each of the black blocks is somewhat
responsible for the white block’s stability. However, if any of the
three blocks individually were removed, the white block would
not fall.

In the literature on causation, a scenario like the one depicted in
Figure 16C is known as an instance of overdetermination
(Gerstenberg, Goodman, et al., 2021; Gerstenberg & Lagnado,
2010; Lagnado et al., 2013; Paul & Hall, 2013). Cases of overdeter-
mination trouble theories that aim to explain causal relationships in
terms of simple counterfactual dependence. To deal with such situ-
ations, counterfactual theories have been expanded to consider not
only whether the candidate cause would have made a difference in
the actual situation, but also whether it could have made a difference
in another possible situation (Halpern, 2016; Halpern & Pearl, 2005;
Woodward, 2003). For example, block A would make a difference to
the white block’s stability in a situation in which either block B or
block C had been removed. Based on this idea, Chockler and
Halpern (2004) developed a model according to which responsibility
reduces the greater the distance is between the actual situation and a
situation in which the candidate cause would have made a difference
to the outcome (where distance is defined in terms of the number of
variables whose values would need to be changed). So block A
would still be responsible for supporting the white block to some
degree because if either block B or block C had not been there,
then block A would have been pivotal.

The current version of the CSM assigns some responsibility to each
of the black blocks because it is possible that the white block would
fall off due to different sources of simulation noise when a black
block is removed. The model predicts that a block’s responsibility
will reduce when other blocks are present in the scene that could
stop the target block from falling. Another way to capture the fact
that each of the black blocks carries some responsibility is by imagin-
ing that external forces might perturb the scene. For example, in the
current setup, the white block is likely to stay supported even if the
table was bumped. But if one of the black blocks were removed
then it would be more likely that a bump to the table would topple
the white block over. Here again, the extent to which a block is respon-
sible for another would not just be a function of the actual situation,
but also take into account whether it would make a difference in
other possible situations (see Grinfeld et al., 2020; Lewis, 1986b;
Vasilyeva et al., 2018; Woodward, 2006).
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Situations of overdetermination also arise in dynamic physical
interactions. For example, imagine that one ball C lies in front of
the gate, and then two balls, A and B, collide with ball C at the
same time and knock it into the gate. The situation is such that either
ball A or ball B would have been individually sufficient to knock ball
C into the gate. Did ball A cause ball C to go into the gate?
Intuitively, the answer is “yes” even though ball C would still
have gone through the gate without ball A. In Gerstenberg,
Goodman, et al. (2021), we handle these kinds of cases by assuming
that people’s causal judgments are sensitive to different aspects of
causation that map onto different counterfactual tests. For example,
one counterfactual test removes the candidate object from the scene
and simulates what would have happened without it. We call this
aspect WHETHER-CAUSATION as it reveals whether the candidate
cause made a difference to whether or not the outcome. Another
counterfactual test slightly perturbs the candidate’s object and sim-
ulates whether the outcome event (finely construed) would have
been different from what actually happened. We call this aspect
HOW-CAUSATION as it reveals whether the candidate’s cause made a
difference to how the outcome came about. Finally, we consider a
counterfactual test for whether the cause object was sufficient for
bringing about the outcome. To test for SUFFICIENT-CAUSATION, the
CSM considers a counterfactual situation in which alternative causes
were removed from the scene and checks whether the object of inter-
est would have caused the outcome in that situation. In the overde-
termination scenario, ball A is not a WHETHER-CAUSE of the
outcome (because ball B would have knocked ball C into the gate
without ball A). However, ball A is a HOw-CAUSE because the out-
come event would have been slightly different had ball A been per-
turbed (e.g., ball C would have gone through the gate at a slightly
different location and at a slightly different point in time). Ball A
was also a SUFFICIENT-CAUSE of the outcome. In a situation in
which the alternative cause (ball B) had been removed, ball A
would have caused ball C to go into the gate.

Gerstenberg, Goodman, et al. (2021) demonstrated how the differ-
ent aspects of causation help explain participants’ judgments across
a challenging set of test cases. Only considering WHETHER-CAUSATION
by itself was not sufficient to account for participants’ causal intui-
tions. In this paper, our implementation of the CSM draws on some
of these aspects of causation. The way in which we model people’s
uncertainty about the intervention includes both the removal of the
black block as well as a perturbation to the blocks above it.
Modeling intervention uncertainty in this way is reminiscent of
WHETHER-CAUSATION and HOW-CAUSATION. However, currently, the
model does not test for whether the black block was sufficient to
guarantee some other objects’ stability. To adequately deal with sit-
uations of causal overdetermination, such as the example shown in
Figure 16C, incorporating a test for sufficiency may be required.

Conclusion

Humans have a remarkable grasp of the physical world. We believe
that this understanding is achieved by building mental models of the
world that support the simulation of counterfactual possibilities. The
CSM captures people’s causal judgments about dynamic physical
events (Gerstenberg, Goodman, et al., 2021), omissions (Gerstenberg
& Stephan, 2021), and static scenes involving physical support.
While most existing causal theories only apply to event causation, the
CSM provides a unifying framework that explains people’s causal

judgments across a variety of different kinds of causal relationships
(Sosa et al., 2021; Wu et al., 2022). In this paper, we investigated peo-
ple’s judgments about block towers as a case study. However, physical
support manifests itself in all sorts of ways: from blocks supporting tow-
ers to rocks supporting houses to socks supporting legs. More work is
needed to explore how well the CSM generalizes to other domains and
tasks.

References

Ahuja, A., & Sheinberg, D. L. (2019). Behavioral and oculomotor evidence
for visual simulation of object movement. Journal of Vision, 19(6), Article
13. https://doi.org/10.1167/19.6.13

Allen, K. R., Smith, K. A., & Tenenbaum, J. B. (2020). Rapid trial-and-error
learning with simulation supports flexible tool use and physical reasoning.
Proceedings of the National Academy of Sciences of the United States of
America, 117(47), 29302-29310. https://doi.org/10.1073/pnas. 1912341117

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K., Kohli, P.,
Battaglia, P., & Hamrick, J. (2019). Structured agents for physical construc-
tion. In Proceedings of the 36th International Conference on Machine
Learning (pp. 464-474). https://doi.org/10.48550/arxiv.1904.03177

Baradel, F., Neverova, N., Mille, J., Mori, G., & Wolf, C. (2019). Cophy:
Counterfactual learning of physical dynamics. Preprint arXiv. https:/
doi.org/10.48550/arXiv.1909.12000

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an
engine of physical scene understanding. Proceedings of the National
Academy of Sciences of the United States of America, 110(45), 18327-
18332. https://doi.org/10.1073/pnas.1306572110

Battaglia, P. W., Pascanu, R., Lai, M., & Rezende, D. J. (2016). Interaction
networks for learning about objects, relations and physics. In Advances
in neural information processing systems (pp. 4502-4510). https://
doi.org/10.48550/arxiv.1612.00222

Bear, D. M., Wang, E., Mrowca, D., Binder, F. J., Tung, H. Y. F., Pramod, R.,
Holdaway, C., Tao, S., Smith, K., Sun, F. Y., & Fei-Fei, L. (2021).
Physion: Evaluating physical prediction from vision in humans and
machines. Preprint arXiv. https://doi.org/10.48550/arXiv.2106.08261

Bechlivanidis, C., Schlottmann, A., & Lagnado, D. A. (2019, April).
Causation without realism. Journal of Experimental Psychology:
General, 148(5), 785-804. https://doi.org/10.1037/xge0000602

Beebee, H. (2004). Causing and nothingness. In J. Collins, N. Hall & L.
A. Paul (Eds.), Causation and counterfactuals (pp. 291-308). MIT Press.

Beller, A., Bennett, E., & Gerstenberg, T. (2020). The language of causation.
In S. Denison and M. Mack and Y. Xu & B. C. Armstrong
(Eds.), Proceedings of the 42nd Annual Conference of the Cognitive
Science Society (pp. 3133-3139). Cognitive Science Society.

Beller, A., Xu, Y., Linderman, S., & Gerstenberg, T. (2022). Looking into the
past: Eye-tracking mental simulation in physical inference. In J.
Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Cognitive
Science Proceedings (pp. 3641-3647). Cognitive Science Society.

Bramley, N. R., Gerstenberg, T., Tenenbaum, J. B., & Gureckis, T. M.
(2018). Intuitive experimentation in the physical world. Cognitive
Psychology, 105, 9-38. https://doi.org/10.1016/j.cogpsych.2018.05.001

Chang, M. B., Ullman, T., Torralba, A., & Tenenbaum, J. B. (2017). A
Compositional Object-Based Approach to Learning Physical Dynamics.
arXiv. (2021). https://arxiv.org/abs/1612.00341

Chockler, H., & Halpern, J. Y. (2004). Responsibility and blame: A
structural-model approach. Journal of Artificial Intelligence Research,
22(1), 93—-115. https://doi.org/10.1613/jair.1391

Cortesa, C. S., Jones, J. D., Hager, G. D., Khudanpur, S., Landau, B., &
Shelton, A. L. (2018). Constraints and development in children’s block
construction. In C. Kalish, M. Rau, X. Zhu, & T. Rogers
(Eds.), Proceedings of the 40th Annual Conference of the Cognitive
Science Society (pp. 244-249). The Royal Society.

Craik, K.J. W. (1943). The nature of explanation. Cambridge University Press.


https://doi.org/10.1167/19.6.13
https://doi.org/10.1167/19.6.13
https://doi.org/10.1167/19.6.13
https://doi.org/10.1167/19.6.13
https://doi.org/10.1073/pnas.1912341117
https://doi.org/10.1073/pnas.1912341117
https://doi.org/10.1073/pnas.1912341117
https://doi.org/10.48550/arxiv.1904.03177
https://doi.org/10.48550/arxiv.1904.03177
https://doi.org/10.48550/arxiv.1904.03177
https://doi.org/10.48550/arxiv.1904.03177
https://doi.org/10.48550/arXiv.1909.12000
https://doi.org/10.48550/arXiv.1909.12000
https://doi.org/10.48550/arXiv.1909.12000
https://doi.org/10.48550/arXiv.1909.12000
https://doi.org/10.48550/arXiv.1909.12000
https://doi.org/10.1073/pnas.1306572110
https://doi.org/10.1073/pnas.1306572110
https://doi.org/10.1073/pnas.1306572110
https://doi.org/10.48550/arxiv.1612.00222
https://doi.org/10.48550/arxiv.1612.00222
https://doi.org/10.48550/arxiv.1612.00222
https://doi.org/10.48550/arxiv.1612.00222
https://doi.org/10.48550/arxiv.1612.00222
https://doi.org/10.48550/arXiv.2106.08261
https://doi.org/10.48550/arXiv.2106.08261
https://doi.org/10.48550/arXiv.2106.08261
https://doi.org/10.48550/arXiv.2106.08261
https://doi.org/10.1037/xge0000602
https://doi.org/10.1037/xge0000602
https://doi.org/10.1016/j.cogpsych.2018.05.001
https://doi.org/10.1016/j.cogpsych.2018.05.001
https://doi.org/10.1016/j.cogpsych.2018.05.001
https://doi.org/10.1016/j.cogpsych.2018.05.001
https://doi.org/10.1016/j.cogpsych.2018.05.001
https://doi.org/10.1016/j.cogpsych.2018.05.001
https://arxiv.org/abs/1612.00341
https://arxiv.org/abs/1612.00341
https://arxiv.org/abs/1612.00341
https://doi.org/10.1613/jair.1391
https://doi.org/10.1613/jair.1391
https://doi.org/10.1613/jair.1391

allied publishers.

This document is copyrighted by the American Psychological Association or one of its

=
()
=)
=1
Q
2]
)

=

personal use of the individual user

lely for the

MENTAL JENGA 29

Crespi, S., Robino, C., & Silva, O. (2012). Spotting expertise in the eyes:
Billiards knowledge as revealed by gaze shifts in a dynamic visual prediction
task. Journal of Vision, 12(11), Article 30. https://doi.org/10.1167/12.11.30

Dowe, P. (2000). Physical causation. Cambridge University Press.

Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016).
Functional neuroanatomy of intuitive physical inference. Proceedings of
the National Academy of Sciences of the United States of America,
113(34), E5S072—E5081. https://doi.org/10.1073/pnas.1610344113

Gerstenberg, T., Goodman, N. D., Lagnado, D. A., & Tenenbaum, J. B. (2021).
A counterfactual simulation model of causal judgments for physical events.
Psychological Review, 128(5), 936-975. https://doi.org/10.1037/rev0000281

Gerstenberg, T., & Icard, T. F. (2020). Expectations affect physical causation
judgments. Journal of Experimental Psychology: General, 149(3), 599—
607. https://doi.org/10.1037/xge0000670

Gerstenberg, T. (in press). What would have happened? Counterfactuals,
hypotheticals, and causal judgments. Philosophical Transactions of the
Royal Society B: Biological Sciences. The Royal Society. https://psyarxiv
.com/rsb46

Gerstenberg, T., & Lagnado, D. A. (2010). Spreading the blame: The alloca-
tion of responsibility amongst multiple agents. Cognition, 115(1), 166—
171. https://doi.org/10.1016/j.cognition.2009.12.011

Gerstenberg, T., Peterson, M. F., Goodman, N. D., Lagnado, D. A., &
Tenenbaum, J. B. (2017). Eye-tracking causality. Psychological Science,
28(12), 1731-1744. https://doi.org/10.1177/0956797617713053

Gerstenberg, T., Siegel, M. H., & Tenenbaum, J. B. (2021). What happened?
Reconstructing the past from vision and sound. PsyArXiv. https:/psyarxiv
.com/tfjdk

Gerstenberg, T., & Stephan, S. (2021). A counterfactual simulation model of
causation by omission. Cognition, 216, Article 10482. https://doi.org/10
.1016/j.cognition.2021.104842

Gerstenberg, T., & Tenenbaum, J. B. (2017). Intuitive theories. In
M. Waldmann (Ed.), Oxford handbook of causal reasoning (pp. 515—
548). Oxford University Press.

Glymour, C., Danks, D., Glymour, B., Eberhardt, F., Ramsey, J., Scheines,
R., & Zhang, J. (2010). Actual causation: a stone soup essay. Synthese,
175(2), 169-192. https://doi.org/10.1007/s11229-009-9497-9

Grinfeld, G., Lagnado, D., Gerstenberg, T., Woodward, J. F., & Usher, M.
(2020). Causal responsibility and robust causation. Frontiers in
Psychology, 11, Article 1069. https://doi.org/10.3389/fpsyg.2020.01069

Groth, O., Fuchs, F. B., Posner, 1., & Vedaldi, A. (2018). Shapestacks:
Learning vision-based physical intuition for generalised object stacking.
In Proceedings of the European Conference on Computer Vision
(ECCV) (pp. 702-717). https://doi.org/https://doi.org/10.48550/arxiv
.1804.08018

Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant, D., Coenen,
A., & Chan, P. (2016). psiTurk: An open-source framework for conducting
replicable behavioral experiments online. Behavior Research Methods,
48(3), 829-842. https://doi.org/10.3758/s13428-015-0642-8

Gweon, H., Asaba, M., & Bennett-Pierre, G. (2017). Reverse-engineering the
process: Adults’ and preschoolers’ ability to infer the difficulty of novel
tasks. In G. Gunzelmann, A. Howes, T. Tenbrink & E. J. Davelaar
(Eds.),Proceedings of the 39th Annual Conference of the Cognitive
Science Society (pp. 458—463). Cognitive Science Society.

Halpern, J. Y. (2016). Actual causality. MIT Press.

Halpern, J. Y., & Pearl, J. (2005). Causes and explanations: A structural-
model approach. Part I: Causes. The British Journal for the Philosophy
of Science, 56(4), 843-887. https://doi.org/10.1093/bjps/axil47

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee, K. R., Tenenbaum, J.
B., & Battaglia, P. W. (2018). Relational inductive bias for physical con-
struction in humans and machines. Preprint arXiv. https://doi.org/10
48550/arXiv.1806.01203

Hamrick, J. B., Battaglia, P. W., Griffiths, T. L., & Tenenbaum, J. B. (2016).
Inferring mass in complex scenes by mental simulation. Cognition, 157,
61-76. https://doi.org/10.1016/j.cognition.2016.08.012

Hamrick, J. B., Smith, K. A., Griffiths, T. L., & Vul, E. (2015). Think again?
The amount of mental simulation tracks uncertainty in the outcome. In
D. C. Noelle (Ed.), Proceedings of the 37th Annual Conference of the
Cognitive Science Society (pp. 866—871). Cognitive Science Society.

Henne, P., Pinillos, A., & De Brigard, F. (2017). Cause by omission and
norm: Not watering plants. Australasian Journal of Philosophy, 95(2),
270-283. https://doi.org/10.1080/00048402.2016.1182567

Hume, D. (1748/1975). An enquiry concerning human understanding.
Oxford University Press.

Janner, M., Levine, S., Freeman, W. T., Tenenbaum, J. B., Finn, C., & Wu, J.
(2019). Reasoning about physical interactions with object-centric models.
International Conference on Learning Representations (pp. 1-12). https://
doi.org/10.48550/arxiv.1812.10972

Kahneman, D., & Tversky, A. (1982). The simulation heuristic. In
D. Kahneman & A. Tversky (Eds.), Judgment under uncertainty:
Heuristics and biases (pp. 201-208). Cambridge University Press.

Kominsky, J. F., & Phillips, J. (2019). Immoral professors and malfunction-
ing tools: Counterfactual relevance accounts explain the effect of norm
violations on causal selection. Cognitive Science, 43(11), Article
€12792. https://doi.org/10.1111/cogs.v43.11

Kominsky, J. F., Strickland, B., Wertz, A. E., Elsner, C., Wynn, K., & Keil, F.
C. (2017). Categories and constraints in causal perception. Psychological
Science, 28(11), 1649-1662. https://doi.org/10.1177/0956797617719930

Kubricht, J. R., Holyoak, K. J., & Lu, H. (2017). Intuitive physics: Current
research and controversies. Trends in Cognitive Sciences, 21(10), 749—
759. https://doi.org/10.1016/j.tics.2017.06.002

Lagnado, D. A., Gerstenberg, T., & Zultan, R. (2013). Causal responsibility
and counterfactuals. Cognitive Science, 37(6), 1036—1073. https://doi.org/
10.1111/cogs.12054

Langenhoff, A. F., Wiegmann, A., Halpern, J. Y., Tenenbaum, J. B., &
Gerstenberg, T. (2021). Predicting responsibility judgments from disposi-
tional inferences and causal attributions. Cognitive Psychology, 129,
Article 101412. https://doi.org/10.1016/j.cogpsych.2021.101412

Lerer, A., Gross, S., & Fergus, R. (2016). Learning physical intuition of block
towers by example. Preprint arXiv. https://doi.org/10.48550/arXiv.1603.01312

Lewis, D. (1973). Causation. The Journal of Philosophy, 70(17), 556-567.
https://doi.org/10.2307/2025310

Lewis, D. (1986a). Events. In Philosophical papers (Vol. 11, pp. 241-270).
Oxford University Press.

Lewis, D. (1986b). Postscript C to ‘Causation’: (insensitive causation). In
Philosophical papers (Vol. 2, pp. 184-188). Oxford University Press.
Little, P. C., & Firestone, C. (2021). Physically implied surfaces. Psychological

Science, 32(5), 799-808. https://doi.org/10.1177/0956797620939942

Livengood, J., & Machery, E. (2007). The folk probably don’t think what you
think they think: Experiments on causation by absence. Midwest Studies in
Philosophy, 31(1), 107-127. https://doi.org/10.1111/misp.2007.31.issue-1

Ludwin-Peery, E., Bramley, N. R., Davis, E., & Gureckis, T. M. (2020).
Broken physics: A conjunction-fallacy effect in intuitive physical reason-
ing. Psychological Science, 31(12), 1602-1611. https://doi.org/10.1177/
0956797620957610

Ludwin-Peery, E., Bramley, N. R., Davis, E., & Gureckis, T. M. (2021). Limits
on simulation approaches in intuitive physics. Cognitive Psychology, 127,
Article 101396. https://doi.org/10.1016/j.cogpsych.2021.101396

Mackie, J. L. (1974). The cement of the universe. Clarendon Press.

McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. L. Stevens
(Eds.), Mental models (pp. 299-324). Lawrence Erlbaum Associates.

McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the
absence of external forces: Naive beliefs about the motion of objects. Science,
210(4474), 1139-1141. https://doi.org/10.1126/science.210.4474.1139

McCloskey, M., Washburn, A., & Felch, L. (1983). Intuitive physics: The
straight-down belief and its origin. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 9(4), 636—649. https://doi.org/10
.1037/0278-7393.9.4.636


https://doi.org/10.1167/12.11.30
https://doi.org/10.1167/12.11.30
https://doi.org/10.1167/12.11.30
https://doi.org/10.1167/12.11.30
https://doi.org/10.1073/pnas.1610344113
https://doi.org/10.1073/pnas.1610344113
https://doi.org/10.1073/pnas.1610344113
https://doi.org/10.1037/rev0000281
https://doi.org/10.1037/rev0000281
https://doi.org/10.1037/xge0000670
https://doi.org/10.1037/xge0000670
https://psyarxiv.com/rsb46
https://psyarxiv.com/rsb46
https://psyarxiv.com/rsb46
https://doi.org/10.1016/j.cognition.2009.12.011
https://doi.org/10.1016/j.cognition.2009.12.011
https://doi.org/10.1016/j.cognition.2009.12.011
https://doi.org/10.1016/j.cognition.2009.12.011
https://doi.org/10.1016/j.cognition.2009.12.011
https://doi.org/10.1016/j.cognition.2009.12.011
https://doi.org/10.1177/0956797617713053
https://doi.org/10.1177/0956797617713053
https://psyarxiv.com/tfjdk
https://psyarxiv.com/tfjdk
https://psyarxiv.com/tfjdk
https://doi.org/10.1016/j.cognition.2021.104842
https://doi.org/10.1016/j.cognition.2021.104842
https://doi.org/10.1016/j.cognition.2021.104842
https://doi.org/10.1016/j.cognition.2021.104842
https://doi.org/10.1016/j.cognition.2021.104842
https://doi.org/10.1007/s11229-009-9497-9
https://doi.org/10.1007/s11229-009-9497-9
https://doi.org/10.3389/fpsyg.2020.01069
https://doi.org/10.3389/fpsyg.2020.01069
https://doi.org/10.3389/fpsyg.2020.01069
https://doi.org/10.3389/fpsyg.2020.01069
https://doi.org/https://doi.org/10.48550/arxiv.1804.08018
https://doi.org/https://doi.org/10.48550/arxiv.1804.08018
https://doi.org/https://doi.org/10.48550/arxiv.1804.08018
https://doi.org/https://doi.org/10.48550/arxiv.1804.08018
https://doi.org/https://doi.org/10.48550/arxiv.1804.08018
https://doi.org/10.3758/s13428-015-0642-8
https://doi.org/10.3758/s13428-015-0642-8
https://doi.org/10.1093/bjps/axi147
https://doi.org/10.1093/bjps/axi147
https://doi.org/10.48550/arXiv.1806.01203
https://doi.org/10.48550/arXiv.1806.01203
https://doi.org/10.48550/arXiv.1806.01203
https://doi.org/10.48550/arXiv.1806.01203
https://doi.org/10.1016/j.cognition.2016.08.012
https://doi.org/10.1016/j.cognition.2016.08.012
https://doi.org/10.1016/j.cognition.2016.08.012
https://doi.org/10.1016/j.cognition.2016.08.012
https://doi.org/10.1016/j.cognition.2016.08.012
https://doi.org/10.1016/j.cognition.2016.08.012
https://doi.org/10.1080/00048402.2016.1182567
https://doi.org/10.1080/00048402.2016.1182567
https://doi.org/10.1080/00048402.2016.1182567
https://doi.org/10.1080/00048402.2016.1182567
https://doi.org/10.48550/arxiv.1812.10972
https://doi.org/10.48550/arxiv.1812.10972
https://doi.org/10.48550/arxiv.1812.10972
https://doi.org/10.48550/arxiv.1812.10972
https://doi.org/10.48550/arxiv.1812.10972
https://doi.org/10.1111/cogs.v43.11
https://doi.org/10.1111/cogs.v43.11
https://doi.org/10.1111/cogs.v43.11
https://doi.org/10.1111/cogs.v43.11
https://doi.org/10.1177/0956797617719930
https://doi.org/10.1177/0956797617719930
https://doi.org/10.1016/j.tics.2017.06.002
https://doi.org/10.1016/j.tics.2017.06.002
https://doi.org/10.1016/j.tics.2017.06.002
https://doi.org/10.1016/j.tics.2017.06.002
https://doi.org/10.1016/j.tics.2017.06.002
https://doi.org/10.1016/j.tics.2017.06.002
https://doi.org/10.1111/cogs.12054
https://doi.org/10.1111/cogs.12054
https://doi.org/10.1111/cogs.12054
https://doi.org/10.1111/cogs.12054
https://doi.org/10.1016/j.cogpsych.2021.101412
https://doi.org/10.1016/j.cogpsych.2021.101412
https://doi.org/10.1016/j.cogpsych.2021.101412
https://doi.org/10.1016/j.cogpsych.2021.101412
https://doi.org/10.1016/j.cogpsych.2021.101412
https://doi.org/10.48550/arXiv.1603.01312
https://doi.org/10.48550/arXiv.1603.01312
https://doi.org/10.48550/arXiv.1603.01312
https://doi.org/10.48550/arXiv.1603.01312
https://doi.org/10.2307/2025310
https://doi.org/10.2307/2025310
https://doi.org/10.1177/0956797620939942
https://doi.org/10.1177/0956797620939942
https://doi.org/10.1111/misp.2007.31.issue-1
https://doi.org/10.1111/misp.2007.31.issue-1
https://doi.org/10.1111/misp.2007.31.issue-1
https://doi.org/10.1111/misp.2007.31.issue-1
https://doi.org/10.1111/misp.2007.31.issue-1
https://doi.org/10.1177/0956797620957610
https://doi.org/10.1177/0956797620957610
https://doi.org/10.1177/0956797620957610
https://doi.org/10.1016/j.cogpsych.2021.101396
https://doi.org/10.1016/j.cogpsych.2021.101396
https://doi.org/10.1016/j.cogpsych.2021.101396
https://doi.org/10.1016/j.cogpsych.2021.101396
https://doi.org/10.1016/j.cogpsych.2021.101396
https://doi.org/10.1126/science.210.4474.1139
https://doi.org/10.1126/science.210.4474.1139
https://doi.org/10.1126/science.210.4474.1139
https://doi.org/10.1126/science.210.4474.1139
https://doi.org/10.1126/science.210.4474.1139
https://doi.org/10.1037/0278-7393.9.4.636
https://doi.org/10.1037/0278-7393.9.4.636
https://doi.org/10.1037/0278-7393.9.4.636
https://doi.org/10.1037/0278-7393.9.4.636
https://doi.org/10.1037/0278-7393.9.4.636

This document is copyrighted by the American Psychological Association or one of its allied publishers.

personal use of the individual user and is not to be disseminated broadly.

This article is intended solely for the

30 ZHOU, SMITH, TENENBAUM, AND GERSTENBERG

McGrath, S. (2005). Causation by omission: A dilemma. Philosophical
Studies, 123(1-2), 125-148. https://doi.org/10.1007/s11098-004-5216-z

Michotte, A. (1946/1963). The perception of causality. Basic Books.

Mitko, A., & Fischer, J. (2020). When it all falls down: The relationship between
intuitive physics and spatial cognition. Cognitive Research: Principles and
Implications, 5(1), 1-13. https://doi.org/10.1186/s41235-020-00224-7.

Paul, L. A., & Hall, N. (2013). Causation: A user’s guide. Oxford University Press.

Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge
University Press.

Phillips, J., & Knobe, J. (2018). The psychological representation of modality.
Mind & Language, 33(1), 65-94. https://doi.org/10.1111/mila.2018.33.issue-1

Pramod, R., Cohen, M. A., Tenenbaum, J. B., & Kanwisher, N. G. (2021).
Invariant representation of physical stability in the human brain.
bioRxiv. https://doi.org/10.7554/eLife.71736

Rajalingham, R., Piccato, A., & Jazayeri, M. (2021). The role of mental sim-
ulation in primate physical inference abilities. bioRxiv. https://doi.org/10
.1101/2021.01.14.426741

Ross, L. N., & Woodward, J.. (2021). Irreversible (one-hit) and reversible
(sustaining) causation. Philosophy of Science, 89(5), 889-898. https://
doi.org/10.1017/psa.2022.70.

Rule, J. S., Tenenbaum, J. B., & Piantadosi, S. T. (2020). The child as hacker.
Trends in Cognitive Sciences, 24(11), 900-915. https://doi.org/10.1016/
.tics.2020.07.005

Salmon, W. C. (1994). Causality without counterfactuals. Philosophy of
Science, 61(2), 297-312. https://doi.org/10.1086/289801

Sanborn, A. N., & Chater, N. (2016). Bayesian brains without probabilities.
Trends in Cognitive Sciences, 20(12), 883-893. https://doi.org/10.1016/j
.tics.2016.10.003

Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling
intuitive physics and Newtonian mechanics for colliding objects.
Psychological Review, 120(2), 411-437. https://doi.org/10.1037/a0031912

Schaffer, J. (2016). The metaphysics of causation. In E. N. Zalta (Ed.), The
Stanford encyclopedia of philosophy (Fall 2016 ed.). Metaphysics
Research Lab, Stanford University. https:/plato.stanford.edu/archives/
fall2016/entries/causation-metaphysics/

Schwartz, D. L., & Black, T. (1999). Inferences through imagined actions:
Knowing by simulated doing. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 25(1), 116-136.https://doi.org/10
.1037/0278-7393.25.1.116

Sloman, S. A. (2005). Causal models: How people think about the world and
its alternatives. Oxford University Press.

Smith, K. A., Dechter, E., Tenenbaum, J., & Vul, E. (2013). Physical predic-
tions over time. In M. Knauff, M. Pauen, N. Sebanz & I. Wachsmuth
(Eds.), Proceedings of the 35th Annual Meeting of the Cognitive Science
Society (pp. 1342—1347). Cognitive Science Society.

Smith, K. A., de Peres, F. A. B., Vul, E., & Tenenbaum, J. B. (2017).
Thinking inside the box: Motion prediction in contained spaces using sim-
ulation. In G. Gunzelmann, A. Howes, T. Tenbrink & E. Davelaar (Eds.),
Proceedings of the 39th Annual Conference of the Cognitive Science
Society (pp. 3209-3214). Cognitive Science Society.

Smith, K. A., Hamrick, J. B., Sanborn, A. N., Battaglia, P. W., Gerstenberg,
T., Ullman, T. D., & Tenenbaum, J. B. (in press). Probabilistic models of
physical reasoning. In T. L. Griffiths, N. Chater & J. B. Tenenbaum (Eds.),
Reverse engineering the mind: Probabilistic models of cognition.

Smith, K. A., & Vul, E. (2013). Sources of uncertainty in intuitive physics. Topics
in Cognitive Science, 5(1), 185-199. https://doi.org/10.1111/tops.12009

Smith, K. A, & Vul, E. (2014). Looking forwards and backwards:
Similarities and differences in prediction and retrodiction. In P. Bello,
M. Guarini, M. McShane & B. Scassellati (Eds.), Proceedings of the

36th Annual Conference of the Cognitive Science Society (pp. 1467-
1472). Cognitive Science Society.

Sosa, F. A., Ullman, T. D., Tenenbaum, J. B., Gershman, S. J., & Gerstenberg,
T. (2021). Moral dynamics: Grounding moral judgment in intuitive physics
and intuitive psychology. Cognition. https:/psyarxiv.com/xh4kg

Suppes, P. (1970). A probabilistic theory of causation. North-Holland.

Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum, J. B. (2017). Mind games:
Game engines as an architecture for intuitive physics. Trends in Cognitive
Sciences, 21(9), 649-665. https://doi.org/10.1016/j.tics.2017.05.012

Ullman, T. D., Stuhlmiiller, A., Goodman, N. D., & Tenenbaum, J. B. (2018).
Learning physical parameters from dynamic scenes. Cognitive
Psychology, 104, 57-82. https://doi.org/10.1016/j.cogpsych.2017.05.006

Ullman, T. D., & Tenenbaum, J. B. (2020). Bayesian models of conceptual
development: Learning as building models of the world. Annual Review
of Developmental Psychology, 2(1), 533-558. https://doi.org/10.1146/
devpsych.2020.2.issue-1

Vasilyeva, N., Blanchard, T., & Lombrozo, T. (2018). Stable causal relation-
ships are better causal relationships. Cognitive Science, 42(4), 1265-1296.
https://doi.org/10.1111/cogs.2018.42.issue-4

Vul, E., Goodman, N., Griffiths, T. L., & Tenenbaum, J. B. (2014). One and
done? Optimal decisions from very few samples. Cognitive Science, 38(4),
599-637 https://doi.org/10.1111/cogs.2014.38 issue-4

Wolff, P. (2007). Representing causation. Journal of Experimental Psychology:
General, 136(1), 82-111. https://doi.org/10.1037/0096-3445.136.1.82

Wolff, P., Barbey, A. K., & Hausknecht, M. (2010). For want of a nail: How
absences cause events. Journal of Experimental Psychology: General,
139(2), 191-221. https://doi.org/10.1037/a0018129

Woodward, J. (2003). Making things happen: A theory of causal explanation.
Oxford University Press.

Woodward, J. (2006). Sensitive and insensitive causation. The Philosophical
Review, 115(1), 1-50. https://doi.org/10.1215/00318108-2005-001

Wu, J., Yildirim, I., Lim, J. J., Freeman, B., & Tenenbaum, J. (2015). Galileo:
Perceiving physical object properties by integrating a physics engine with
deep learning. In Advances in neural information processing systems (vol.
28, pp. 127-135). MIT Press.

Wu, S., Sridhar, S., & Gerstenberg, T. (2022). That was close! A counterfac-
tual simulation model of causal judgments about decisions. In J.
Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni
(Eds.), Proceedings of the 44th Annual Conference of the Cognitive
Science Society (pp. 3703-3710). Cognitive Science Society.

Yi, K., Gan, C., Li, Y., Kohli, P., Wu, J., Torralba, A., & Tenenbaum, J. B.
(2019). Clevrer: Collision Events for Video Representation and
Reasoning. arXiv. https://doi.org/10.48550/arXiv.1910.01442.

Yildirim, I., Gerstenberg, T., Saeed, B., Toussant, M., & Tenenbaum, J. B.
(2017). Physical problem solving: Joint planning with symbolic, geomet-
ric, and dynamic constraints. In G. Gunzelmann, A. Howes, T. Tenbrink &
E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the
Cognitive Science Society (pp. 3584-3589). Cognitive Science Society.

Yildirim, I., Saeed, B., Bennett-Pierre, G., Gerstenberg, T., Tenenbaum, J. B.,
& Gweon, H. (2019). Explaining intuitive difficulty judgments by model-
ing physical effort and risk. In A. K. Goel, C. M. Seifert, & C. Freksa
(Eds.), Proceedings of the 41st Annual Conference of the Cognitive
Science Society(pp. 1233-1238). Cognitive Science Society.

Zacks, J. M., & Tversky, B. (2001). Event structure in perception and concep-
tion. Psychological Bulletin, 127(1), 3-21. https://doi.org/10.1037/0033-
2909.127.1.3

Zultan, R., Gerstenberg, T., & Lagnado, D. A. (2012). Finding fault:
Counterfactuals and causality in group attributions. Cognition, 125(3),
429-440. https://doi.org/10.1016/j.cognition.2012.07.014

(Appendix follows)


https://doi.org/10.1007/s11098-004-5216-z
https://doi.org/10.1007/s11098-004-5216-z
https://doi.org/10.1186/s41235-020-00224-7
https://doi.org/10.1186/s41235-020-00224-7
https://doi.org/10.1111/mila.2018.33.issue-1
https://doi.org/10.1111/mila.2018.33.issue-1
https://doi.org/10.1111/mila.2018.33.issue-1
https://doi.org/10.1111/mila.2018.33.issue-1
https://doi.org/10.1111/mila.2018.33.issue-1
https://doi.org/10.7554/eLife.71736
https://doi.org/10.7554/eLife.71736
https://doi.org/10.7554/eLife.71736
https://doi.org/10.1101/2021.01.14.426741
https://doi.org/10.1101/2021.01.14.426741
https://doi.org/10.1101/2021.01.14.426741
https://doi.org/10.1101/2021.01.14.426741
https://doi.org/10.1101/2021.01.14.426741
https://doi.org/10.1017/psa.2022.70
https://doi.org/10.1017/psa.2022.70
https://doi.org/10.1017/psa.2022.70
https://doi.org/10.1017/psa.2022.70
https://doi.org/10.1017/psa.2022.70
https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1016/j.tics.2020.07.005
https://doi.org/10.1086/289801
https://doi.org/10.1086/289801
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1037/a0031912
https://doi.org/10.1037/a0031912
https://plato.stanford.edu/archives/fall2016/entries/causation-metaphysics/
https://plato.stanford.edu/archives/fall2016/entries/causation-metaphysics/
https://plato.stanford.edu/archives/fall2016/entries/causation-metaphysics/
https://plato.stanford.edu/archives/fall2016/entries/causation-metaphysics/
https://plato.stanford.edu/archives/fall2016/entries/causation-metaphysics/
https://doi.org/10.1037/0278-7393.25.1.116
https://doi.org/10.1037/0278-7393.25.1.116
https://doi.org/10.1037/0278-7393.25.1.116
https://doi.org/10.1037/0278-7393.25.1.116
https://doi.org/10.1037/0278-7393.25.1.116
https://doi.org/10.1111/tops.12009
https://doi.org/10.1111/tops.12009
https://doi.org/10.1111/tops.12009
https://psyarxiv.com/xh4kg
https://psyarxiv.com/xh4kg
https://psyarxiv.com/xh4kg
https://doi.org/10.1016/j.tics.2017.05.012
https://doi.org/10.1016/j.tics.2017.05.012
https://doi.org/10.1016/j.tics.2017.05.012
https://doi.org/10.1016/j.tics.2017.05.012
https://doi.org/10.1016/j.tics.2017.05.012
https://doi.org/10.1016/j.tics.2017.05.012
https://doi.org/10.1016/j.cogpsych.2017.05.006
https://doi.org/10.1016/j.cogpsych.2017.05.006
https://doi.org/10.1016/j.cogpsych.2017.05.006
https://doi.org/10.1016/j.cogpsych.2017.05.006
https://doi.org/10.1016/j.cogpsych.2017.05.006
https://doi.org/10.1016/j.cogpsych.2017.05.006
https://doi.org/10.1146/devpsych.2020.2.issue-1
https://doi.org/10.1146/devpsych.2020.2.issue-1
https://doi.org/10.1146/devpsych.2020.2.issue-1
https://doi.org/10.1146/devpsych.2020.2.issue-1
https://doi.org/10.1146/devpsych.2020.2.issue-1
https://doi.org/10.1146/devpsych.2020.2.issue-1
https://doi.org/10.1111/cogs.2018.42.issue-4
https://doi.org/10.1111/cogs.2018.42.issue-4
https://doi.org/10.1111/cogs.2018.42.issue-4
https://doi.org/10.1111/cogs.2018.42.issue-4
https://doi.org/10.1111/cogs.2018.42.issue-4
https://doi.org/10.1111/cogs.2014.38.issue-4
https://doi.org/10.1111/cogs.2014.38.issue-4
https://doi.org/10.1111/cogs.2014.38.issue-4
https://doi.org/10.1111/cogs.2014.38.issue-4
https://doi.org/10.1111/cogs.2014.38.issue-4
https://doi.org/10.1037/0096-3445.136.1.82
https://doi.org/10.1037/0096-3445.136.1.82
https://doi.org/10.1037/0096-3445.136.1.82
https://doi.org/10.1037/0096-3445.136.1.82
https://doi.org/10.1037/0096-3445.136.1.82
https://doi.org/10.1037/a0018129
https://doi.org/10.1037/a0018129
https://doi.org/10.1215/00318108-2005-001
https://doi.org/10.1215/00318108-2005-001
https://doi.org/10.48550/arXiv.1910.01442
https://doi.org/10.48550/arXiv.1910.01442
https://doi.org/10.48550/arXiv.1910.01442
https://doi.org/10.48550/arXiv.1910.01442
https://doi.org/10.1037/0033-2909.127.1.3
https://doi.org/10.1037/0033-2909.127.1.3
https://doi.org/10.1037/0033-2909.127.1.3
https://doi.org/10.1037/0033-2909.127.1.3
https://doi.org/10.1037/0033-2909.127.1.3
https://doi.org/10.1037/0033-2909.127.1.3
https://doi.org/10.1016/j.cognition.2012.07.014
https://doi.org/10.1016/j.cognition.2012.07.014
https://doi.org/10.1016/j.cognition.2012.07.014
https://doi.org/10.1016/j.cognition.2012.07.014
https://doi.org/10.1016/j.cognition.2012.07.014
https://doi.org/10.1016/j.cognition.2012.07.014

J

>
<}
RS
=}
4
s
=
=

nd is not to be diss

This document is copyrighted by the American Psychological Association or one of its a

This article is intended solely for the personal use of the individual user

MENTAL JENGA 31

Appendix

Pairwise Feature Correlations

Table A1
Correlation Coefficients Between Individual Features Across All Trials in All of the Experiments
Scene features Black block features Other block features
Name y Edge Angle Blocks y Edge Angle Above y Edge Angle Pile
Scene
y _
Edge —.21 —
Angle — .43 15 —
Blocks 48 —.26 — .42 —
Black
y .06 —.09 —.01 .03 —
Edge —.14 .58 11 —-.17 .10 —
Angle —.13 12 43 —-.22 —.05 .06 —
Above 21 .20 —.10 .18 —.61 25 —.15 —
Other
y .20 —.03 —.08 .09 —.05 —.05 —.03 .08 —
Edge —.10 A7 .06 —.13 —.05 23 .05 .09 13 —
Angle —.21 .08 49 —.20 —.00 .06 .16 —.03 .05 .10 —
Pile —.19 .55 15 —.05 —.05 .30 .07 .09 —.01 36 11 —

Note. We abbreviated the feature labels in this table here. One of our criteria for including features in the model was that none of the pairwise features
correlations was greater than r = 0.8. In fact, the strongest correlation was between the number of blocks above the black block, and the y-position of the
black block with r = —.61: the higher the black block was in a tower, the fewer blocks were on top of it. See Table 2 for a description of each feature.

Sensitivity Analysis

Figure A1
Sensitivity Analysis of the Noise Parameters in the Full counterfactual simulation model (CSM)
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® 10 10 19

@2 9 L 9 Q9

Q 8 loss 28 loss 28 loss

c 7 0.80 c 7 0.51 c 7 0.54

o 6 o 6 on 6

= 5 L 5 L 5

g 4 g 4 E 4

S 3 © 3 © 3

5 2 €2 € 2

£ (1) 0.40 3 (1) 0.43 3 (1) 0.42
0123456780910 012345678910 012345678910
perceptual noise perceptual noise intervention noise

Note. Heatmaps showing averaged cross-sections of our three-way grid search over the parameter space for the full CSM. Note that the range for the gradient
is different in each of the panels. The model was evaluated on the selections from Experiments 1 and 2, and the predictions from Experiment 3. We performed a
grid search over the perceptual noise, intervention noise, and dynamic noise, {B,, B;, B+} €[1,2, ..., 10] 3, totaling 1331 sets of parameters. For each parameter
setting, we ran 200 simulations in Experiments 1 and 2, and 400 simulations in Experiment 3, for each trial in those experiments. In (A) the losses are averaged
over all B4, in (B) the losses are averaged over all f;, and in (c) the losses are averaged over all B,,. The best-fitting CSM has the following parameter values: 3, =
2, B;=35, Bs=4. An interactive widget for visualizing different versions of the CSM is available at https:/cicl-stanford.github.io/mental_jenga/interface.
Overall, the results show that the different sources of noise partly trade off. For example, (A) shows that at least some intervention noise or some perceptual
noise is required to improve the model’s performance. Dynamic noise affects the model’s performance less strongly than the other sources of noise. For exam-
ple, in (B) and (C) the loss gradient is stronger along the x-axis versus the y-axis. This result is in line with the cross-validation results in Table 5, showing that
models which drop the dynamic noise generally fare better than models that drop either of the other two sources of noise.
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CSM and Features Model Combined

Table A2
Results of Features Model Fits Comparing the Features Model and a “Hybrid” Model That Includes the Features Together With the
Predictions of the Full Counterfactual Simulation Model (CSM; Features + CSM)

Features Features + CSM
CSM
Name Experiment 1 Experiment 2 All All Experiment 1 Experiment 2 All

intercept -1.24 -1.77 -1.50 — -2.10 -2.98 -2.49
avg y 17 .58 .16 — .16 35 13
avg_edge dist .19 -.09 .16 — .09 -.35 0

avg_angle .01 13 .20 — .10 .26 17
n blocks —-.32 —.85 =27 — —.19 —-.37 —.17
black y — .21 -.46 -.38 — —.18 —.26 —.26
black edge dist -.05 47 —.26 — -.02 .30 15
black angle 0 .05 - .01 — .02 .29 .05
black above .03 .23 24 — -.23 -.02 -.05
other y 1.45 .83 1.12 — .64 22 39
other edge dist -1.01 -91 -.87 — -51 —.10 -.27
other angle 29 —.09 17 — .09 .06 .07
other black pile 45 .62 58 — 21 22 .26
CsM — — — — 3.68 4.72 4.06
r (Experiment 1) .78 57 .76 .87 .88 .83 .87
r (Experiment 2) .59 73 .70 .84 .81 .86 .86
r (Experiment 3) 17 40 .65 .80 .83 74 .80
r (All) .67 .65 73 .86 .84 .84 .86

Note. The models were fitted to participants’ selections in Experiments 1 and 2. The rows above the double line at the bottom show the coefficients for each
(normalized) predictor. Bold values indicate significant predictors with p < .01. The r values below the double line indicate how well a model fitted on one (orall
experiments) correlates with participants’ judgments in other experiments. For example, the “r (Experiment 1)” row shows how well a model that was fit to
Experiment 1 correlates with participants’ judgments in Experiment 2 (r=.57 for the features model and r = .83 for the features + CSM). Overall, these
analyses show that once the CSM is added as a predictor to the model, most of the other features become nonsignificant predictors of participants’ judgments.

(Appendix continues)
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Number of Simulations

Figure A2

Relationship Between the Variance in Participants’ Responses in the Selection Condition and the
Counterfactual Simulation Model’s (CSM’s) Corresponding Judgment as a Function of How Many
Simulations k the CSM Assumes Each Participant Ran
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Note. We assume that participants run k simulations and make their predictions by averaging the number of blocks
that fall across these simulations. Here, we estimate k by noticing that the variance in participants’ responses is a
function of k: running more simulations should correspond to reduced variance. Variance in participants’ judg-

5
2 = ments, however, may stem from multiple sources. In line with Battaglia et al. (2013), we model the variance in par-

< g ticipants’ judgments as arising from two sources: sampling variance (that we are interested in), and a general

B ~f Jjudgment variance. The sampling variance for running k simulations on any particular trial is equal to (1/k) vy,

EJ = where v is the sampling variance of a single simulation and is unique in each trial. In our analysis, v, is the within-

% ; trial variance of single simulations from the CSM. The judgment variance v is assumed to be constant across trials as

Z = well as the number of simulations k. The total variance is the sum of sampling variance and judgment variance. Thus,

E i by fitting a linear regression from the variance of an individual CSM simulation (v) to the variance in participants’

g é responses across all trials, we can estimate both 1/k and v. We show regression fits separately for (A) Experiment 1

g E and (B) Experiment 2; the dashed colored lines show the slope for different values of k. The results of this analysis

i é show that the variances in participants’ responses are most consistent with the assumption that they relied on k=1

S i‘ simulation to make their judgments (see also Battaglia et al., 2013; Vul et al., 2014). See the online article for the

= color version of this figure.
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